Dietary pattern and gut microbiota in type 2 diabetes mellitus: A literature review

Pages: 632 – 646

Pola makan dan mikrobiota usus pada diabetes mellitus tipe 2: Sebuah tinjauan pustaka

Martha Pitaloka Putri^{1*}, Endang Sri Lestari², Diana Nur Afifah³

- ¹ Master of Nutrition Science, Faculty of Medicine, Diponegoro University, Central Java, Indonesia.
- E-mail: marthaplp06@gmail.com
- ² Department of Microbiology, Faculty of Medicine, Diponegoro University, Central Java, Indonesia.
- E-mail: endang sri lestari@yahoo.com
- ³ Department of Nutrition, Faculty of Medicine, Diponegoro University, Central Java, Indonesia.

E-mail: diananurafifah@live.undip.ac.id

*Correspondence Author:

Department of Nutrition, Faculty of Medicine, Diponegoro University, Semarang, Central Java 50275, Indonesia.

E-mail: marthaplp06@gmail.com

Article History:

Received: July 10, 2024; Revised: July 25, 2024; Accepted: August 03, 2024; Published: September 06, 2024.

Publisher:

Politeknik Kesehatan Aceh Kementerian Kesehatan RI

© The Author(s). 2024 **Open Access** This article has been distributed under the terms of the *License Internasional Creative Commons Attribution 4.0*

Abstract

Nutrition has been identified as the primary modifiable factor, and the type of food, macronutrients, and micronutrient composition of the diet have distinct effects on gut microbiota and related metabolites. These effects significantly influence the mechanisms that regulate hyperglycemia and insulin resistance, influencing gut microbiota remodeling and the development of T2DM. This study aimed to gather information on changes in gut microbiota composition (Lactobacillus and Bifidobacterium) and describe the beneficial or detrimental effects, impacts, and outcomes of macronutrients (carbohydrate, protein, and fat) and fiber on gut microbiota composition in T2DM. Nine English articles were the literature review. Lactobacillus from Bifidobacterium can positively reduce the blood glucose levels. Changes in the gut microbiota and its metabolites, which are influenced by carbohydrate, protein, lipid, and fiber intake, can worsen or decrease biochemical parameters and improve T2DM complications. The conclusion of this literature review is that gut microbiota can be crucial in the future treatment of diabetes mellitus, especially in combination with other therapeutic options.

Keywords: Diabetes mellitus, dietary pattern, gut microbiota, lactobacillus, bifidobacterium

Abstrak

Zat gizi telah diidentifikasi sebagai faktor utama yang dapat dimodifikasi. Jenis makanan, komposisi makronutrien dan mikronutrien dari makanan memiliki efek yang berbeda pada mikrobiota usus dan metabolit terkait. Dampak ini secara signifikan memengaruhi mekanisme yang mengatur hiperglikemia dan resistensi insulin yang memengaruhi perubahan komposisi mikrobiota usus dan perkembangan T2DM. Studi ini bertujuan untuk mengumpulkan informasi tentang perubahan komposisi (Lactobacillus mikrobiota usus dan Bifidobacterium) mendeskripsikan efek menguntungkan atau merugikan, dampak, dan hasil makronutrien (karbohidrat, protein, dan lemak) dan serat terhadap komposisi mikrobiota usus di DMT2. Sebanyak 9 artikel berbahasa Inggris diperoleh dari hasil kajian pustaka. Lactobacillus dan Bifidobacterium secara positif dapat menurunkan kadar glukosa darah. Perubahan mikrobiota usus dan metabolitnya, yang dipengaruhi oleh asupan karbohidrat, protein, lipid, dan serat, dapat memperburuk atau menurunkan parameter biokimia dan memperbaiki komplikasi DMT2. Kesimpulan dari tinjauan pustaka ini adalah mikrobiota usus dapat berperan penting dalam pengobatan diabetes melitus di masa depan, terutama bila dikombinasikan dengan pilihan terapi lain.

Kata Kunci: Diabetes mellitus, mikrobiota usus, *Lactobacillus*, *Bifidobacterium*, pola makan

Introduction

Type 2 diabetes mellitus (T2DM) is the leading cause of death worldwide. The incidence of diabetes has increased rapidly in recent years. Currently, more than 400 million patients are diagnosed with diabetes and this number is expected to double by 2045 (Saeedi et al., 2019). T2DM is a metabolic disease characterized by hyperglycemia and lipid profile dysfunction (Sircana et al., 2018). The factors that can influence the occurrence of T2DM are genetic and environmental factors, such as diet and the structure of the intestinal microbiota (Sircana et al., 2018). Diet is an essential factor in determining the nature of the bacterial, viral, and fungal elements that comprise the intestinal microbiota (Ortega et al., 2020).

Interactions between diet and microbiota have been reported to influence insulin resistance, and chronic inflammatory responses (Ponzo et al., 2019). Food composition is essential the development of diabetes mellitus (DM). A diet with high sugar, fat, and cholesterol levels increases the risk of diabetes (Lazar et al., 2019). This diet causes an imbalance in microbial homeostasis (gut dysbiosis) and damages the intestinal mucosal barrier, thereby facilitating the development of diabetes mellitus (Xi & Xu, 2021). Diet has a long-term influence on gut microbiota, which can be an appropriate strategy for managing diabetes mellitus.

Individuals with T2DM show varied gut microbiota results; these factors influence gut microbiota diversity, namely external complex factors (drugs), host genetic factors, and environmental factors (changes in eating habits) (Therdtatha al., 2021). carbohydrates in the intestine are digested by bacteria, producing short-chain fatty acids (SCFA) and their primary metabolites, such as lactate and succinate (Therdtatha et al., 2021). These products are directly or indirectly involved in metabolic and energy homeostasis (Fernández-Veledo and Vendrell, 2019). Biosynthesis dysfunction is believed to be related to metabolic diseases. Dysbiosis is characterized by an imbalance microorganisms in the human digestive tract. Dysbiosis may contribute to the development of chronic diseases, such as T2DM.

Bifidobacterium belongs to the most abundant class of Actinobacteria, but its phylum is much smaller (Rinninella et al., 2023). Bifidobacterium plays an essential role in the

biodegradation of resistant starch and in carbohydrate fermentation in the lower intestine (Ahmad et al., 2019). Consumption of various saccharides can result in a high proportion of *Bifidobacterium* (Kondo et al., 2021). *Bifidobacterium* has been shown to have the most consistent potential to protect against T2DM (Gao et al. 2018). *Lactobacillus* is a diverse genus containing the largest species in the human intestine among the classes of probiotic bacteria and belongs to the phylum *Firmicutes* (Al-Jameel, 2021). These bacteria have species-or strain-specific effects on individuals with T2DM.

Dysbiosis and increased intestinal lipopolysaccharide permeability lead to translocation, which can activate the innate immune system (Al-Ishaq et al., 2023). In patients with diabetes, plasma levels of lipopolysaccharide are higher than those in participants. healthy causing low-grade inflammation that may lead to insulin resistance (Al-Ishaq et al., 2023). The inflammatory response observed in patients with diabetes may be caused by dysbiosis of the gut microbiota and its primary metabolites, such as bile acids and SCFAs, which regulate glucose metabolism and insulin sensitivity (Al-Ishag et al. 2023). This suggests that gut microbiota may be an essential driver of diabetes pathogenesis and could be used as a potential therapeutic target.

Nutrition has been identified as the primary modifiable factor influencing gut microbiota remodeling and the development of T2DM, with various diets, food groups, macronutrients, and micronutrients each having distinct effects on its composition ((Beam et al., 2021), Zmora et al., 2019)). The type of food and macronutrient and micronutrient composition of the diet have distinct effects on the gut microbiota and related metabolites. These effects significantly influence the mechanisms that regulate hyperglycemia and insulin resistance (Maestri et al., 2023).

This review highlights the crucial role of macronutrients at the intersection of gut microbial eubiosis and the development of T2DM. It examines the changes in gut microbiota composition, particularly focusing on *Lactobacillus* and *Bifidobacterium*, in individuals with T2DM. This review also explores how *Lactobacillus*, *Bifidobacterium*, and their related metabolites can either contribute to or protect against diabetes. Additionally, it discusses the

effects of different macronutrients on the microbiota and their relationship with T2DM.

This study aimed to gather information on changes in gut microbiota composition (*Lactobacillus* and *Bifidobacterium*) and describe the beneficial or detrimental effects, impacts, and outcomes of macronutrients (carbohydrate, protein, and fat) and fiber on gut microbiota composition in T2DM.

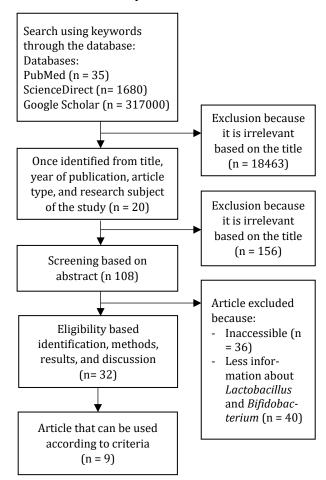
Methods

Data Sources and Collection

A literature review was conducted using the PubMed database. The search strategy is a combination of keywords, subject, and title words as follows, or the combination used is as follows: "diabetes mellitus," "gut microbiota." "Lactobacillus," "Bifidobacterium," and Articles published between January 1, 2018, and January 1, 2024, were included. The articles and abstracts were limited to studies written in English. The primary outcome of interest was the changes in the gut microbiota in terms of the levels of Lactobacillus and Bifidobacterium. Species-specific associations between fasting glucose and HbA1c levels can also be reported as a secondary outcome.

35 articles were obtained from the PubMed database, 1680 from the ScienceDirect database, and 31700 articles from the Google Scholar database (Figure 1).

Study selection


To continue the study, we selected articles that were most relevant to the topic. Articles that met the inclusion criteria were selected for assessment. Eligibility criteria included studies that met the **PICOS** (Patients/participants, Intervention, Comparison/control Group, Outcomes and Study Design) where the study population consisted of Individuals with diabetes mellitus. overweight, and/or obesity; 2) adults only (over 18 years); 3) minimum intervention duration of 1 month (4 weeks); 4) dietary intervention is carried out every day; and 5) the results reported are gut microbiota (levels Lactobacillus and Bifidobacterium), glucose, and HbA1c. 6) Consumption of diabetes mellitus medications. Exclusion consisted of Individuals with hypertension, cardiometabolic disease, cardiovascular disease, metabolic syndrome, type 1 diabetes, gestational

diabetes, NAFLD, cancer, gastrointestinal disease, end-stage renal disease, neurological disease, and research conducted in adolescents or middle age were excluded.

Data Synthesis

The findings of the included studies will be presented as a narrative synthesis and illustrated in a table that contains the following information: author, year, subject characteristics, type of intervention, duration, primary outcome, and secondary outcomes. Subgroup analyses will be performed for different dietary intervention types, based on duration.

The data obtained were then studied by summarizing and analyzing it through narrative elaboration and determining the conclusions of the research results. Data analysis was performed by describing the relationship between macronutrient intake and gut microbiota in T2DM patients. Assessments related to the clinical parameters of diabetes mellitus were also performed.

Figure 1. PRISMA diagram article selection scheme

Result and Discussion

Lactobacillus, Bifidobacterium and Diabetes Mellitus

The gut microbiota is a significant component of body health. The magnitude of the influence of gut bacteria on T2DM has been linked to changes in the taxonomy of the gut microbiota and differences in the production of gut metabolites, including SCFAs, amino acids, and bile acids. It has been shown to improve or worsen hyperglycemia and insulin resistance (Liu et al. 2022). *Lactobacillus* and *Bifidobacterium* participate in the deconjugation of conjugated bile acids via bile salt hydrolases (Jia et al., 2018).

Bifidobacterium and Lactobacillus, which are significant SCFA producers, are associated with reduced serum HbA1c levels (Hsieh et al., 2018). The results showed that Bifidobacterium and Lactobacillus were significantly and negatively correlated with HbA1c (Almugadam et al., 2020). Increased intestinal permeability causes changes in SCFAs and amino acid absorption in T2DM patients due to gut microbiota dysbiosis (L. Zhao et al., 2020).

Dysbiosis can significantly increase the glucose metabolism. Patients with T2DM experience changes in their gut microbiota, with a decreased ratio of *Bacteroidetes/Firmicutes* (F/B) and *Bifidobacterium* (Al-Jameel, 2021). The most abundant genus in the phylum *Actinobacteria* is *Bifidobacterium*. The most abundant genus in the *Actinobacteria* phylum is *Bifidobacterium*, which is negatively correlated with fasting blood glucose (GDP) because it is often associated with protective properties in T2DM (Gurung et al., 2020).

Metformin significantly improved *Bifidobacterium* and glucose tolerance (Gao et al., 2018). In addition, it plays an essential role in maintaining the permeability and integrity of the intestinal epithelium and produces anti-inflammatory metabolites (Stefani et al., 2018). *Bifidobacterium* is a group of bacteria that has beneficial effects on health, and a decrease in its composition has been associated with T2DM.

The T2DM group has a higher level of Bifidobacterium than the healthy, obese, and prediabetic groups (Düzgün et al., 2023). The results of this study are inconsistent with those of previous studies that found reduced numbers of *Bifidobacterium* in T2DM patients. *Bifidobacterium* may alter the function of

dendritic cells to regulate intestinal immune homeostasis. This provides the body with excellent resistance to digestive disorders (Razmpoosh et al., 2019). Studies conducted in Japan have shown that subjects with T2DM have significantly higher levels of *Bifidobacterium spp*. than controls (Adachi et al., 2019). *Bifidobacterium spp*. and *Lactobacillales* are more abundant in T2DM patients because they use \propto -GI, which can affect the digestive system (Adachi et al., 2019).

Several studies have confirmed that the function and composition of the gut microbiota in T2DM patients are altered. Studies that have been conducted comparing healthy adults and T2DM patients showed a significant difference in the relative amount of *Lactobacillus* in the diabetes group compared to that in the control group (Bokhamada & Elmasli, 2021). The results of this study are related to research conducted in Egypt (Halawa et al., 2019). In this study, a low proportion of *Lactobacillus* in T2DM patients was needed to determine the correlation or cause and effect (Halawa et al., 2019).

Lactobacillus is positively correlated with fasting blood glucose and glycosylated hemoglobin (HbA1c) (Bokhamada & Elmasli, 2021). Probiotic bacteria, such as Lactobacillus and some other strains, can improve diabetes conditions by reducing GDP and HbA1c in T2DM patients (Bokhamada & Elmasli, 2021). This indicated that Lactobacillus has an inverse relationship with the amount of glucose in the blood.

Individuals with T2DM have significantly higher proportions of Bifidobacterium and Lactobacillus than do those with other types of diabetes (Kondo et al. 2021). Proportions of the Bifidobacterium and Lactobacillus genera: The high rate in T2DM patients in Japan was associated with α-glucosidase inhibitors (Gurung et al., 2020). Thus, α -glucosidase inhibitors may be closely related to T2DMmicrobiota. Lactobacillus associated gut plantarum and Bifidobacterium in two groups (T2DM and non-T2DM) compared with healthy young subjects in Yogyakarta (Rustanti et al., 2023). In the T2DM group, Lactobacillus plants tended to be more common than in the non-T2DM group. Lactobacillus plantarum is the most common Lactobacillus species, and high detected in the intestine levels have been (Rustanti et al., 2023).

Patients with T2DM and obesity in Romania have significantly lower levels of L. acidophilus, L. plantarum, and L. reuteri than healthy individuals (Suceveanu et al., 2018). Gram-negative bacteria are often found in the feces of people with metabolic syndromes such dyslipidemia, diabetes, and obesity (Suceveanu et al., 2018). Gram-negative bacteria can trigger subclinical pro-inflammatory processes typical of diabetes and obesity by releasing lipopolysaccharide (LPS). Clinical trials were conducted on humans using 12 species of Lactobacillus species, and adding probiotics showed some protective effects ((Hsieh et al., 2018); Kobyliak et al., 2018)).

The critical role of *Actinobacteria* in biodegradation-resistant starch positively correlates with fasting blood glucose levels (Ahmad et al., 2019). *Firmicutes* can increase the absorption of monosaccharides from the host intestine by increasing hepatic triglyceride production, which can cause insulin resistance (Ahmad et al., 2019). These changes may positively contribute to low-grade inflammation, mainly through the activation of G-protein coupled receptors (GPCRs) associated with SCFAs, thereby causing metabolic disorders (Ahmad et al., 2019).

There was a progressive decrease in the abundance and diversity of gut microbiota with the duration of diabetes. This proves that some beneficial bacteria are negatively correlated with disease duration and changes in gut microbiota. This study is consistent with previous research on the relationship between dysbiosis and gut microbiota in T2DM (Zhang et al. 2019).

Table 1 summarizes the data available in the literature discussing the influence of *Bifidobacterium* and *Lactobacillus* species on diabetes mellitus, including the target pathways tested, route of administration, effects on diabetes, follow-up period, methods, and models used in each study.

Lactobacillus, Bifidobacterium and Diet

Increasing evidence suggests that the composition and metabolites of the gut microbiota can be influenced by dietary habits, thereby affecting human health and disease. Nutrition plays an essential role in changes in the pathophysiology and gut microbiota of T2DM, and is an essential factor in considering

dietary interventions to reduce complications of hyperglycemia and insulin resistance (Hamamah et al., 2024).

Nutrients shape the gut microbiota and contribute to over 20% of the variability in human interindividual microbiota (Rothschild et al., 2018). Therefore, identifying various dietary patterns, macronutrients, micronutrients, and other food groups may influence gut microbiota. This is an essential approach to the prevention and control of diabetes. The effects of interactions between dietary components and T2DM are still not fully understood. However, high-fruit and vegetable diets benefit glucose metabolism (Hamamah et al., 2024).

The low intake of fermented foods and beverages in T2DM in Japan shows that the proportion of *Bifidobacterium* and *Lactobacillus* genera is significantly higher than that in individuals without diabetes mellitus (Kondo et al., 2021). In addition, the high proportions of *Bifidobacterium* and *Lactobacillus* in T2DM patients were associated with the use of α -glucosidase inhibitors (Gurung et al., 2020). The use of α -glucosidase inhibitors may affect the gut microbiota of T2DM patients.

The high proportion of *Bifidobacterium* is caused by traditional and unique Japanese foods that contain various types of saccharides. Therefore, the gut microbiota composition of Japanese people is unique compared that with of other ethnicities (Kondo et al., 2021). The proportion of *Lactobacillus spp.* in the intestine decreases when consuming foods that are high in salt (Hashimoto et al. 2020). Moreover, the typical Japanese diet has become Westernized (high in fat and low in fiber) (Murakami et al., 2018). Changes in eating habits that cause gut dysbiosis may increase the incidence of T2DM (Adachi et al., 2019).

A study conducted by Hur et al. (2022) showed an increase in *Bifidobacterium longum* in obese women who followed a low-glycemic diet. Additionally, individuals who followed a control diet had lower serum butyric acid levels than those who followed a low-glycemic diet (Hur et al., 2022). A long-term diet causes the formation of the main enterotypes, *Prevotella*, *Bacteroides*, and *Ruminococcus* (Hur, Yang, et al., 2022). *Bifidobacterium spp.* and *Lactobacillus spp.* are some of the bacteria influenced by diet, so it can be said that diet is the primary

modulator of the gut microbiota (Hur, Wu, et al., 2022); Hur, Yang, et al., 2022).

Carbohydrate

Many studies have highlighted the strong association between high sugar intake and the development of T2DM (Lazar et al., 2019). Carbohydrates are divided into two categories based on their enzymatic degradation ability in the small intestine: digestible carbohydrates (starch and sugar, including glucose, lactose, fructose, and sucrose) and indigestible carbohydrates (resistant starch and fiber). After degradation, digestible carbohydrates release glucose into the bloodstream and induce insulin response. In contrast, bacteria are also present in the digestive tract (Lazar et al., 2019). Absorption of high amounts of carbohydrates can cause the microbiota to be enriched with Bifidobacterium (Lazar et al., 2019).

An increase in the genus *Bifidobacterium* was the main change in T2DM patients in Japanese (Adachi et al., 2019). Sucrose intake, a characteristic of a westernized diet, correlates with these changes (Adachi et al., 2019). Sucrose intake is associated with *Bifidobacterium* (Sikalidis & Maykish, 2020). Not all sucrose can be absorbed in the small intestine; however, some can reach the large intestine (Jang et al., 2018). Whether the relative abundance of Bifidobacterium in T2DM increases or decreases is still debated (Adachi et al., 2019). Research on T2DM patients in Japan has shown an increase *in Bifidobacterium* in patients taking α -glucosidase inhibitors (Adachi et al., 2019).

Bifidobacterium strains are important probiotics because they aid in carbohydrate fermentation via the fructose-6-phosphate phosphoketolase pathway (Takahashi, 2019). Several Bifidobacterium species have high levels of fructose transporters and acetic acid (Hashimoto production et al., 2020). Bifidobacterium have a bifid shunt that can efficiently produce adenosine triphosphate from glucose. The unique pathway for *Bifidobacterium* to degrade hexose sugars, glucose, and fructose is called the "bifid shunt" (Devika & Raman, 2019).

Increased *Bifidobacterium* levels lead to increased insulin signaling, decreased inflammation in adipose tissue, insulinstimulated glucose uptake, and increased glucose transporter-4 translocation. This finding indicates that dietary sucrose intake is associated with insulin sensitivity (Hashimoto et

al. 2020). Glycolysis, or gluconeogenesis, is related to carbohydrate metabolism, in which carbohydrates are converted into short-chain fatty acids. This phenomenon is often observed in T2DM patients (Hashimoto et al., 2020).

Consumption of a low-carbohydrate diet (LCD) for three months is known to increases GLP. One secretion reduces the HbA1c levels and increases the abundance of SCFA-producing species (Ren et al. 2020). The free fatty acid receptors, FFAR2 (GPR43) and FFAR3 (GPR41), assist in the fermentation of carbohydrates in the intestine to produce SCFA. This causes the mitogen-activated protein (MAPK)/extracellular protein kinase (ERK) pathway to stimulate the release of GLP-1. Administration of **Bifidobacterium** Lactobacillus spp. can increase the secretion of GLP-1 and butyrate by two-fold (Hernández et al., 2019). Metabolic signaling pathways generated by gut microbiota play an essential role in the response to carbohydrate intake. High carbohydrate intake can cause metabolic endotoxemia, insulin resistance, and hyperglycemia, leading to changes in the composition of gut microbiota.

Protein

Proteases and peptidases hydrolyze food proteins to produce amino acids, peptides, and tripeptides. With the help of the gut microbiota, these products are absorbed into enterocytes in the small intestine (J. Zhao et al., 2018). Gut microbiota is essential for recycling dietary proteins and nitrogen in the small intestine. Ammonia, SCFA, hydrogen, and sulfate are the end products of the metabolism of undigested amino acid-fermenting bacteria (J. Zhao et al., 2018). Plant-based proteins increase insulin sensitivity and improve glycemic control in T2DM patients with. Additionally, increasing plant-based protein intake is associated with lower odds of T2DM and lower odds of T2DM and its comorbidities (Gutierrez-Mariscal et al., 2023).

Plant-based proteins increase insulin sensitivity and improve glycemic control in T2DM patients with. Additionally, increasing plant- based protein intake is associated with lower odds of T2DM and lower odds of T2DM and its comorbidities (Gutierrez-Mariscal et al., 2023). Plant-based proteins have beneficial effects, whereas animal proteins, such as red meat and processed meat, have the opposite

effects on gut microbiota and T2DM (Hamamah et al., 2024). Compared with animal proteins, vegetable proteins can increase the abundance of *Bifidobacterium* and *Lactobacillus* (Rinninella et al., 2019).

Fat

Similar to protein, a high intake of animal fats has detrimental effects on vegetable fats. High intake of vegetable fat is associated with a significantly reduced risk of developing T2DM (Hamamah et al., 2024). A meta-analysis reported a high intake of vegetable fats, especially α -linolenic acid from plants and polyunsaturated fatty acids, which is inversely correlated with the incidence of T2DM (Neuenschwander et al., 2020). Intervention with dairy products or yogurt for three weeks can increase the growth of Lactobacillus and Bifidobacterium (Aslam et al., 2020). The fourweek intervention of yogurt-based drinks, such as kefir, can increase the abundance of Lactobacillus ((Yilmaz et al., 2020); Butler et al., 2020)).

Consumption of milk and its derivative products can trigger significant changes in the composition of the gut microbiota, thereby reducing the adverse effects of T2DM. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) obtained from the diet are partially metabolized by anaerobic bacteria such as *Bifidobacteria* and *Lactobacilli* (Fu et al., 2021). Omega-3 PUFAs supplementation (4 g daily) in healthy middleaged volunteers increased the abundance of *Bifidobacterium* and *Lactobacillus*. However, it did not affect gut microbiota diversity, and there were no changes in taxa at the phylum level (Watson et al., 2018).

Fiber

SCFA-producing bacteria can increase owing to high fiber intake, which can significantly increase butyric acid levels, such that GLP-1 increases, HbA1c decreases, and glucose homeostasis increases. Changes in the gut

microbiota in T2DM can improve glucose homeostasis through the intervention of a high-fiber diet (L. Zhao et al., 2018). Low dietary fiber intake is associated with dysbiosis (Kondo et al., 2021). A high intake of dietary fiber and omega-3 PUFAs may improve the composition of the gut microbiota and reduce the risk of hyperglycemia (Riccio & Rossano, 2018).

High-fiber diets such as the Mediterranean diet (MD) are known to cause an increase in the abundance of *Lactobacillus* and Bifidobacterium as the main SCFA-producing genera, which plays an essential role in glucose homeostasis (Meslier et al., 2020). Low-fiber diets have the opposite effects, such as decreased gut microbiota diversity, decreased production, worsened butvrate insulin resistance, and increased susceptibility to infection (Leshem et al., 2020). Dietary fiber can increase Bifidobacterium spp., and other SCFArelated genera can increase GLP-1 secretion, reduce HbA1c levels, and reduce harmful bacterial metabolites such as indole and hydrogen sulfide (Riccio & Rossano, 2018).

Most studies have shown that components in cereals can reduce the risk of disease ((Li et al., 2023); Iversen et al., 2022)). Individuals who consume high amounts of whole-grain cereals, barley, oats, and rye, and limit their intake of refined grains or cereals with refined sugar and artificial sweeteners show increased blood glucose levels and insulin sensitivity (Iversen et al., 2022).

Individuals with a high intake of tree nuts and almonds show increased HbA1 levels, which are markers of inflammation and blood glucose (Hou et al., 2018). However, the impact of almonds on HbA1c levels requires further investigation. Increases in *Faecalibacterium*, *Clostridium*, *Dialister*, and *Roseburia* and decreases in *Ruminococcus*, *wanted*, *Oscillopira*, and *Bifidobacterium* have been found in individuals with a high intake of nuts (Holscher et al., 2018).

Table 1. Representative bacterial species and their underlying anti-diabetic effects.

Bacterial	Subjects	Methods	Drugs	Mode of	Number of Strain	Results	Reference
Genus/Species				Administ	Tested/Concentr		S
				ration	ation/Genes		
Lactobacillus	86	Double-	Individual	Orally	ADR-1 dan ADR-	- Significant reductions HbA1c	(Hsieh et
reuteri	individu	blinded,	s taking	(prebioti	$3 (4 \times 10^{9} \text{ CFU of})$	in participants in the live ADR-	al., 2018)
	with	randomiz	anti-	c	ADR-1 or	1 consumption group.	
	T2DM	ed for 9	diabetic	suppleme	2×10^{10} cells of	- There was no significant	
		months	drugs, and	nts)	ADR-3 every	difference in the HbA1c serum	
			antibiotics,		day)	level among participants who	

Bacterial Genus/Species	Subjects	Methods	Drugs	Mode of Administ ration	Number of Strain Tested/Concentr ation/Genes	Results	Reference s
			or other probiotic products for >4 weeks	Tauon	ation/ delies	consumed heat-killed ADR-3. L. reuteri or Bifidobacterium spp. were significantly increased in the ADR-1 and ADR-3 consumption groups, after 6 months of intake. - A significant reduction in HbA1c was observed in the ADR-1 and ADR-3 consumption participants who displayed at least an 8-fold increase in fecal L. reuteri. - A significantly positive correlation between Bifidobacterium spp. and Lactobacillus spp. in participants with increased levels of fecal L. reuteri. - Lactobacillus spp. level displayed a positive correlation with Bifidobacterium spp.	
Bifidobacterium , Lactobacillus, Lactococcus, Propionibacteri um, Acetobacter	patients with T2DM	Single- center double blind, randomiz ed clinical trial (8 weeks)	Metformin , insulin on a stabilized dose for at least 3 months	(prebioti c suppleme	Lactobacillus + Lactococcus (6 x 10 ¹⁰ CFU/g), Bifidobacterium (1 x 10 ¹⁰ CFU/g), Propionibacteriu m (3 x 10 ¹⁰ CFU/g), Acetobacter (1 x 10 ⁶ CFU/g)	- HbA1c insignificant decreased in placebo and probiotics groups In probiotics responders after supplementation a siginificant reduction in HbA1c.	(Kobyliak et al., 2018)
Lactobacillus, Bifidobacterium and Streptococcus	68 patients with T2DM		Drugs prescribed by doctors	Orally (prebioti c suppleme nts)	Lactobacillus acidophilus (2 x 10° CFU), Lactobacillus casei (7 x 10° CFU), Lactobacillus	- Significant decrease and increase in the level of fasting plasma blood in probiotic group No significant alterations were observed for within and between group comparasons in the level of insulin and insulin resistance.	(Razmpoo sh et al., 2019)
Lactobacillus plantarum, Bifidobacteriu m, Prevotella	11 non-T2l women and 11 women with T2D		Metformin glimepirio and nontherap ic	le,	The 16S rRNA gene	HbA1c were positively	Rustanti et al., 2023)

Bacterial Genus/Species	Subjects N	Methods 1	A	lode of dminist ation	Number of Strain I Tested/Concentr ation/Genes	Results	Reference s
Firmicutes, Bacteroides, and Bifidobacteriu m	15 individu with T2DM, 15 individu with prediabetes, 15 individu with obese dan 15 individu lear	A cross- section al study		NA	The 16S rRNA gene	- The levels of Bifidobacterium in fecal microbiota were significantly higher in T2DM compared with lean, prediabetic, and obese The levels of Bifidobacterium in urinary microbiota were decreased in obese, prediabetic, and T2DM	(Düzgün et al., 2023)
Bifidobacteriu m spp., Order Lactobacillales, Bacteroides spp.,, Prevotella spp.	59 patients with T2DM	section	Stable doses of medicatio for at least 1 month	n	The 16S rDNA	subjects as controls. - The level of bacteria of the order <i>Lactobacillales</i> was significantly higher in the patients with T2DM than that in the control subjects. - The level of <i>Bifidobacterium spp.</i> was significantly higher in the patients with T2DM than that in the control subjects - The patients with T2DM had significantly lower levels of <i>Bacteroides spp.</i> than those in the control subjects.	(Adachi et al., 2019)
B. vulgatus, B. rodentium, P. copri, E. coli, S. aureus, B. subtilis, Lactobacillus acidophilus	20 diabetic patients	A cross- sectional study	Treatment with insulin or oral hypoglycemi c agents	NA		 The relative abundance of Lactobacillus acidophilus decreased significantly in patients with T2DM. The relative abundance of Lactobacillus acidophilus was positively correlated with fasting blood sugar and HbA1c 	(Bokham ada & Elmasli, 2021)
Bifidobacteriu m, Lactobacillus, Blautia, Phascolarctoba cterium	without diabetes, 17 with type 1 diabetes, 383 with T2DM, and 8 with other types of diabetes	A cross- sectional study	The medications used for diabetes (α-glucosidase inhibitors and glinide medications)	NA	The 16S rRNA gene	level T2DM had higher percentages of the Bifidobacterium and Lactobacillus genera and lower percentages of the Blautia and Phascolarctobacterium genera Higher proportions of patients with T2DM in the red group used α-glucosidase inhibitors and glinide medications.	
Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus fermentum, Lactobacillus plantarum,	100 patients with T2DM	Experim ental study	NA	NA	The standard pour plate method	the L. acidophilus, L. plantarum and L. reuteri subgroups of Lactobacillus sp were significantly lower among patients with T2DM and obesity than in controls.	(Sucevea nu et al., 2018)

Bacterial	Subjects	Methods	Drugs	Mode of	Number of Strain	Results	Reference
Genus/Species				Administ	Tested/Concentr		S
				ration	ation/Genes		
Lactobacillus						- The counting of	
salivaricus and						Bifidobacterium spp.	
Lactobacillus						revealed a higher	
johnsonii						presence of B. bifidum in	
Bifidobacteriu						controls than in obese or	
m longum,						T2DM.	
Bifidobacteriu						- Low counts of <i>L</i> .	
m adolescentis,						acidophilus and L. reuteri	
Bifidobacteriu						were positively correlated	
m bifidum,						with the increased levels	
Bifidobacteriu						of HbA1c no matter of	
m infantis,						diet, age, ethnicity or	
Bifidobacteriu						metabolic disorders	
m breve and						history.	
Bifidobacteriu							
m choerinum							

Conclusion

Gut microbiota has recently been frequently used in diabetes mellitus research because of its essential role in the pathophysiology of T2DM. There is a lack of data in the literature discussing the correlation between *Lactobacillus* and *Bifidobacterium* and diabetes mellitus in humans. To improve complications and reduce biochemical parameters in T2DM, *Lactobacillus* and *Bifidobacterium* require more research regarding standardization in protocols followed, models used, and interpretation of results.

Nutrients in food majorly affect host physiology through the mediation of the gut microbiota and metabolism. These interactions involve the intestinal and immune systems. Various descriptive relationships have been found between nutrients and gut microbes. However, their relevance must be further explored through mechanistic studies that can encompass the complexity of the subject and translate results from animal models to humans. Given the enormous variability of gut microbiota individuals, it is necessary to gradually move beyond standard dietary approaches to personalized nutrient intake tailored to the host microbiota system.

Research to explore and understand the interaction between diet and gut microbiota in T2DM patients is still limited. Therefore, it is recommended to conduct further research on the development of strategies and identification of effective dietary intervention targets that can improve the function of gut microbiota to prevent and control T2DM.

References

Adachi, K., Sugiyama, T., Yamaguchi, Y., Tamura, Y., Izawa, S., & Hijikata, Y. (2019). Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut related metabolism in Japanese subjects. *J. Clin. Biochem. Nutr.*, 64, 231–238.

https://doi.org/10.3164/jcbn.18-101 Ahmad, A., Yang, W., Chen, G., Shafiq, M., Javed, S., Ali Zaidi, S. S., Shahid, R., Liu, C., & Bokhari, H. (2019). Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. *PLOS ONE*, *14*(12), e0226372.

> https://doi.org/10.1371/journal.pone.022 6372

Al-Ishaq, R. K., Samuel, S. M., & Büsselberg, D. (2023). The Influence of Gut Microbial Species on Diabetes Mellitus. *International Journal of Molecular Sciences*, 24(9), 8118. https://doi.org/10.3390/ijms24098118

Al-Jameel, S. S. (2021). Association of diabetes and microbiota: An update. *Saudi Journal of Biological Sciences*, *28*(8), 4446–4454. https://doi.org/10.1016/j.sjbs.2021.04.04

Almugadam, B. S., Liu, Y., Chen, S., Wang, C., Shao, C., Ren, B., Tang, L., & Hatziagelaki, E. (2020). Alterations of Gut Microbiota in Type 2 Diabetes Individuals and the Confounding Effect of Antidiabetic Agents. *Journal of Diabetes Research*, 2020, 1–14. https://doi.org/10.1155/2020/7253978

Aslam, H., Marx, W., Rocks, T., Loughman, A.,

- Chandrasekaran, V., Ruusunen, A., Dawson, S. L., West, M., Mullarkey, E., Pasco, J. A., & Jacka, F. N. (2020). The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. *Gut Microbes*, 12(1), 1799533. https://doi.org/10.1080/19490976.2020. 1799533
- Beam, A., Clinger, E., & Hao, L. (2021). Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. *Nutrients*, 13(8), 2795. https://doi.org/10.3390/nu13082795
- Bokhamada, H. K., & Elmasli, I. A. H. (2021). *The Comparative Between Gut Microbiota in Type 2 Patients Diabetes and Health People.*
- Butler, M. I., Bastiaanssen, T. F. S., Long-Smith, C., Berding, K., Morkl, S., Cusack, A.-M., Strain, C., Busca, K., Porteous-Allen, P., Claesson, M. J., Stanton, C., Cryan, J. F., Allen, D., & Dinan, T. G. (2020). Recipe for a Healthy Gut: Intake of Unpasteurised Milk Is Associated with Increased Lactobacillus Abundance in the Human Gut Microbiome. *Nutrients*, 12(5), 1468. https://doi.org/10.3390/nu12051468
- Devika, N. T., & Raman, K. (2019). Deciphering the metabolic capabilities of Bifidobacteria using genome-scale metabolic models. *Scientific Reports*, 9(1), 18222. https://doi.org/10.1038/s41598-019-54696-9
- Düzgün, Ç., Dede, S., Karakuş, E., Adaş, M., & Bilen, (2023).Biochemical analysis microbiotas obtained from healthy, prediabetic, type 2 diabetes, and obese **Journal** individuals. **Turkish** of Biochemistry, 48(1), 58-65. https://doi.org/10.1515/tjb-2022-0110
- Fernández-Veledo, S., & Vendrell, J. (2019). Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? *Reviews in Endocrine and Metabolic Disorders*, 20(4), 439–447. https://doi.org/10.1007/s11154-019-09513-z
- Fu, Y., Wang, Y., Gao, H., Li, D., Jiang, R., Ge, L., Tong, C., & Xu, K. (2021). Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. *Mediators of Inflammation*, 2021, 1–11. https://doi.org/10.1155/2021/8879227

- Gao, R., Zhu, C., Li, H., Yin, M., Pan, C., Huang, L., Kong, C., Wang, X., Zhang, Y., Qu, S., & Qin, H. (2018). Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. *Obesity*, 26(2), 351–361.
 - https://doi.org/10.1002/oby.22088
- Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. *EBioMedicine*, *51*, 102590.
 - https://doi.org/10.1016/j.ebiom.2019.11. 051
- Gutierrez-Mariscal, F. M., Alcalá-Diaz, J. F., Quintana-Navarro, G. M., De La Cruz-Ares, S., Delgado-Lista, J., Yubero-Serrano, E. M., & Lopez-Miranda, J. (2023). Changes in quantity plant-based protein intake on type 2 diabetes remission in coronary heart disease patients: From the CORDIOPREV study. European Journal of Nutrition, 62(4), 1903–1913. https://doi.org/10.1007/s00394-022-03080-x
- Halawa, M., El-Salam, M., Mostafa, B., & Sallout, S. (2019). The Gut Microbiome, Lactobacillus acidophilus; relationship with type 2 Diabetes Mellitus. *Curr Diabetes Rev.*, 15(6):480-485. https://doi.org/doi: 10.2174/1573399815666190206162143.
- Hamamah, S., Iatcu, O. C., & Covasa, M. (2024).

 Nutrition at the Intersection between Gut
 Microbiota Eubiosis and Effective
 Management of Type 2 Diabetes. *Nutrients*,
 16(2), 269.
 https://doi.org/10.3390/nu16020269
- Hashimoto, Y., Hamaguchi, M., Kaji, A., Sakai, R., Osaka, T., Inoue, R., Kashiwagi, S., Mizushima, K., Uchiyama, K., Takagi, T., Naito, Y., & Fukui, M. (2020). Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes. *Journal of Diabetes Investigation*, 11(6), 1623–1634. https://doi.org/10.1111/jdi.13293
- Hernández, Canfora, Jocken, & Blaak. (2019). The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. *Nutrients*, 11(8), 1943. https://doi.org/10.3390/nu11081943
- Holscher, H. D., Guetterman, H. M., Swanson, K. S., An, R., Matthan, N. R., Lichtenstein, A. H.,

- Novotny, J. A., & Baer, D. J. (2018). Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. *The Journal of Nutrition*, 148(6), 861–867. https://doi.org/10.1093/jn/nxy004
- Hou, Y.-Y., Ojo, O., Wang, L.-L., Wang, Q., Jiang, Q., Shao, X.-Y., & Wang, X.-H. (2018). A randomized controlled trial to compare the effects of peanuts and almonds on the cardiometabolic and inflammatory parameters in patients with Type 2 diabetes mellitus. *Nutrients*, *10*(11), 1565. https://doi.org/10.3390/nu10111565
- Hsieh, M.-C., Tsai, W.-H., Jheng, Y.-P., Su, S.-L., Wang, S.-Y., Lin, C.-C., Chen, Y.-H., & Chang, W.-W. (2018). The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: A randomized, double-blinded, placebocontrolled trial. *Scientific Reports*, 8(1), 16791. https://doi.org/10.1038/s41598-018-35014-1
- Hur, H. J., Wu, X., Yang, H. J., Kim, M. J., Lee, K.-H., Hong, M., Park, S., & Kim, M.-S. (2022). Beneficial Effects of a Low-Glycemic Diet on Serum Metabolites and Gut Microbiota in Obese Women With Prevotella and Bacteriodes Enterotypes: A Randomized Clinical Trial. *Frontiers in Nutrition*, 9, 861880.
 - https://doi.org/10.3389/fnut.2022.86188
- Hur, H. J., Yang, H. J., Kim, M. J., Lee, K.-H., Kim, M.-S., & Park, S. (2022). Association of Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with Lifestyles in Asians. *Nutrients*, 14(15), 3222. https://doi.org/10.3390/nu14153222
- Iversen, K. N., Dicksved, J., Zoki, C., Fristedt, R., Pelve, E. A., Langton, M., & Landberg, R. (2022). The Effects of High Fiber Rye, Compared to Refined Wheat, on Gut Microbiota Composition, Plasma Short Chain Fatty Acids, and Implications for Weight Loss and Metabolic Risk Factors (the RyeWeight Study). *Nutrients*, 14(8), 1669
 - https://doi.org/10.3390/nu14081669
- Jang, C., Hui, S., Lu, W., Cowan, A. J., Morscher, R. J., Lee, G., Liu, W., Tesz, G. J., Birnbaum, M. J., & Rabinowitz, J. D. (2018). The Small

- Intestine Converts Dietary Fructose into Glucose and Organic Acids. *Cell Metabolism*, 27(2), 351-361.e3. https://doi.org/10.1016/j.cmet.2017.12.0 16
- Jia, W., Xie, G., & Jia, W. (2018). Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. *Nature Reviews Gastroenterology & Hepatology*, 15(2), 111–128. https://doi.org/10.1038/nrgastro.2017.1
- Kobyliak, N., Falalyeyeva, T., Mykhalchyshyn, G., Kyriienko, D., & Komissarenko, I. (2018). Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, 12(5), 617–624. https://doi.org/10.1016/j.dsx.2018.04.01
- Kondo, Y., Hashimoto, Y., Hamaguchi, M., Ando, S., Kaji, A., Sakai, R., Inoue, R., Kashiwagi, S., Mizushima, K., Uchiyama, K., Takagi, T., Naito, Y., & Fukui, M. (2021). Unique Habitual Food Intakes in the Gut Microbiota Cluster Associated with Type 2 Diabetes Mellitus. *Nutrients*, *13*(11), 3816. https://doi.org/10.3390/nu13113816
- Lazar, V., Ditu, L.-M., Pircalabioru, G. G., Picu, A., Petcu, L., Cucu, N., & Chifiriuc, M. C. (2019). Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Frontiers in Nutrition, 6, 21. https://doi.org/10.3389/fnut.2019.00021
- Leshem, A., Liwinski, T., & Elinav, E. (2020). Immune-Microbiota Interplay and Colonization Resistance in Infection. *Molecular Cell*, 78(4), 597–613. https://doi.org/10.1016/j.molcel.2020.03. 001
- Li, X., Shi, Y., Wei, D., Ni, W., Zhu, N., & Yan, X. (2023). Impact of a high dietary fiber cereal meal intervention on body weight, adipose distribution, and cardiovascular risk among individuals with type 2 diabetes. *Frontiers in Endocrinology*, 14, 1283626.
 - https://doi.org/10.3389/fendo.2023.1283 626
- Liu, L., Zhang, J., Cheng, Y., Zhu, M., Xiao, Z., Ruan, G., & Wei, Y. (2022). Gut microbiota: A new target for T2DM prevention and treatment.

- Frontiers in Endocrinology, 13, 958218. https://doi.org/10.3389/fendo.2022.9582 18
- Maestri, M., Santopaolo, F., Pompili, M., Gasbarrini, A., & Ponziani, F. R. (2023). Gut microbiota modulation in patients with non-alcoholic fatty liver disease: Effects of current treatments and future strategies. *Frontiers in Nutrition*, 10, 1110536. https://doi.org/10.3389/fnut.2023.11105
- Meslier, V., Laiola, M., Roager, H. M., De Filippis, F., Roume, H., Quinquis, B., Giacco, R., Mennella, I., Ferracane, R., Pons, N., Pasolli, E., Rivellese, A., Dragsted, L. O., Vitaglione, P., Ehrlich, S. D., & Ercolini, D. (2020). Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. *Gut*, *69*(7), 1258–1268.
 - https://doi.org/10.1136/gutjnl-2019-320438
- Murakami, K., Livingstone, M., & Sasaki, S. (2018). Thirteen-Year Trends in Dietary Patterns among Japanese Adults in the National Health and Nutrition Survey 2003–2015: Continuous Westernization of the Japanese Diet. *Nutrients*, *10*(8), 994. https://doi.org/10.3390/nu10080994
- Neuenschwander, M., Barbaresko, J., Pischke, C. R., Iser, N., Beckhaus, J., Schwingshackl, L., & Schlesinger, S. (2020). Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. *PLOS Medicine*, 17(12), e1003347. https://doi.org/10.1371/journal.pmed.1003347
- Ortega, M. A., Fraile-Martínez, O., Naya, I., García-Honduvilla, N., Álvarez-Mon, M., Buján, J., Asúnsolo, Á., & De La Torre, B. (2020). Type 2 Diabetes Mellitus Associated with Obesity (Diabesity). The Central Role of Gut Microbiota and Its Translational Applications. *Nutrients*, 12(9), 2749. https://doi.org/10.3390/nu12092749
- Ponzo, V., Fedele, D., Goitre, I., Leone, F., Lezo, A., Monzeglio, C., Finocchiaro, C., Ghigo, E., & Bo, S. (2019). Diet-Gut Microbiota Interactions and Gestational Diabetes

- Mellitus (GDM). *Nutrients*, *11*(2), 330. https://doi.org/10.3390/nu11020330
- Razmpoosh, E., Javadi, A., Ejtahed, H. S., Mirmiran, P., Javadi, M., & Yousefinejad, A. (2019). The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(1), 175–182.
 - https://doi.org/10.1016/j.dsx.2018.08.00 8
- Ren, M., Zhang, H., Qi, J., Hu, A., Jiang, Q., Hou, Y., Feng, Q., Ojo, O., & Wang, X. (2020). An Almond-Based Low Carbohydrate Diet Improves Depression and Glycometabolism in Patients with Type 2 Diabetes through Modulating Gut Microbiota and GLP-1: A Randomized Controlled Trial. *Nutrients*, *12*(10), 3036. https://doi.org/10.3390/nu12103036
- Riccio, P., & Rossano, R. (2018). Diet, Gut Microbiota, and Vitamins D + A in Multiple Sclerosis. *Neurotherapeutics*, *15*(1), 75–91. https://doi.org/10.1007/s13311-017-0581-4
- Rinninella, Cintoni, Raoul, Lopetuso, Scaldaferri, Pulcini, Miggiano, Gasbarrini, & Mele. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. *Nutrients*, 11(10), 2393. https://doi.org/10.3390/nu11102393
- Rinninella, E., Tohumcu, E., Raoul, P., Fiorani, M., Cintoni, M., Mele, M. C., Cammarota, G., Gasbarrini, A., & Ianiro, G. (2023). The role of diet in shaping human gut microbiota. Best Practice & Research Clinical Gastroenterology, 62–63, 101828. https://doi.org/10.1016/j.bpg.2023.1018 28
- Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., ... Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. *Nature*, 555(7695), 210–215. https://doi.org/10.1038/nature25973
- Rustanti, N., Murdiati, A., Juffrie, M., & Rahayu, E. S. (2023). Comparison Between Metabolic

- Parameters, Food Intake, and Gut Microbiota in Type 2 Dabetes and Non-Diabetic Indonesian Women. *Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition)*, 11(2), 119–127. https://doi.org/10.14710/jgi.11.2.119-127
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes and Clinical Practice. Research 107843. https://doi.org/10.1016/j.diabres.2019.1 07843
- Sikalidis, A. K., & Maykish, A. (2020). The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. *Biomedicines*, 8(1), 8. https://doi.org/10.3390/biomedicines80

10008

- Sircana, A., Framarin, L., Leone, N., Berrutti, M., Castellino, F., Parente, R., De Michieli, F., Paschetta, E., & Musso, G. (2018). Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? *Current Diabetes Reports,* 18(10), 98. https://doi.org/10.1007/s11892-018-1057-6
- Stefani, S., Ngatidjan, S., Paotiana, M., Sitompul, K. A., Abdullah, M., Sulistianingsih, D. P., Shankar, A. H., & Agustina, R. (2018). predominantly Dietary quality of traditional diets is associated with blood glucose profiles, but not with total fecal Bifidobacterium in Indonesian women. **PLOS** ONE, 13(12), e0208815. https://doi.org/10.1371/journal.pone.020 8815
- Suceveanu, A. I., Stoian, A. P., Parepa, I., Voinea, C., Hainarosie, R., Manuc, D., Nitipir, C., Mazilu, L., & Suceveanu, A. P. (2018). Gut Microbiota Patterns in Obese and Type 2 Diabetes (T2D) Patients from Romanian Black Sea Coast Region. *Revista de Chimie*, 69(8), 2260–2267. https://doi.org/10.37358/RC.18.8.6512
- Takahashi, N. (2019). Acidogenic Potential of

- Oral Bifidobacterium and Its High Fluoride Tolerance. *Frontiers in Microbiology*, *10*.
- Therdtatha, P., Song, Y., Tanaka, M., Mariyatun, M., Almunifah, M., Manurung, N. E. P., Indriarsih, S., Lu, Y., Nagata, K., Fukami, K., Ikeda, T., Lee, Y.-K., Rahayu, E. S., & Nakayama, J. (2021). Gut Microbiome of Indonesian Adults Associated with Obesity and Type 2 Diabetes: A Cross-Sectional Study in an Asian City, Yogyakarta. *Microorganisms*, 9(5), 897. https://doi.org/10.3390/microorganisms 9050897
- Watson, H., Mitra, S., Croden, F. C., Taylor, M., Wood, H. M., Perry, S. L., Spencer, J. A., Quirke, P., Toogood, G. J., Lawton, C. L., Dye, L., Loadman, P. M., & Hull, M. A. (2018). A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. *Gut*, 67(11), 1974–1983. https://doi.org/10.1136/gutjnl-2017-314968
- Xi, Y., & Xu, P.-F. (2021). Diabetes and gut microbiota. *World J Diabetes*, *12*(10), 1693–1703.
- Yilmaz, I., Dolar, M. E., Department of Internal Medicine and Gastroenterology, Uludag University School of Medicine, Bursa, Turkey, & Ozpinar, H. (2020). Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled The Turkish trial. Iournal of Gastroenterology, 30(3), 242-253. https://doi.org/10.5152/tjg.2018.18227
- Zhang, F., Wang, M., Yang, J., Xu, Q., Liang, C., Chen, B., Zhang, J., Yang, Y., Wang, H., Shang, Y., Wang, Y., Mu, X., Zhu, D., Zhang, C., Yao, M., & Zhang, L. (2019). Response of gut microbiota in type 2 diabetes to hypoglycemic agents. *Endocrine*, 66(3), 485–493.
 - https://doi.org/10.1007/s12020-019-02041-5
- Zhao, J., Zhang, X., Liu, H., Brown, M. A., & Qiao, S. (2018). Dietary Protein and Gut Microbiota Composition and Function. Current Protein & Peptide Science, 20(2), 145–154.
 - https://doi.org/10.2174/1389203719666 180514145437
- Zhao, L., Lou, H., Peng, Y., Chen, S., Fan, L., & Li, X.

(2020). Elevated levels of circulating short-chain fatty acids and bile acids in type 2 diabetes are linked to gut barrier disruption and disordered gut microbiota. *Diabetes Research and Clinical Practice*, 169, 108418. https://doi.org/10.1016/j.diabres.2020.108418

Zhao, L., Zhang, F., Ding, X., Wu, G., & Zhang, C. (2018). Gut bacteria selectively promoted

by dietary fibers alleviate type 2 diabetes. *Science*, *359*(6380), 1151–1156. https://doi.org/10.1126/science.aao5774
Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: Diet, health and the gut microbiota. *Nature Reviews Gastroenterology & Hepatology*, *16*(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2