Pages: 471 – 477 p-issn 2527-3310; e-issn 2548-5741

Central obesity and its association with metabolic syndrome in adolescent students of Aceh Sport High School: A cross-sectional study

Obesitas sentral dan hubungannya dengan sindrom metabolik pada siswa remaja di Sekolah Olahraga Aceh: Studi potong lintang

Nurul Nadia¹, Herlina Dimiati^{2*}, Eka Yunita Amna³, Rusdi Andid⁴, Nora Sovira⁵, T. M. Thaib⁶

- ¹ Nutrition Study Program, Departement of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
- Email: nurulnadia_fk07@yahoo.com
- ² Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
- Email: herlinadimiati@usk.ac.id
- ³ Division of Growth and Development and Social Pediatric, Departement of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
- Email: amnaekayunita@gmail.com
- ⁴ Division of Endocrinology, Departement of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
- Email: rusdi_andid@yahoo.com
- ⁵ Division of Emergency and Intensive Care, Departement of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
- Email: norasovira@unsyiah.ac.id
- ⁶ Division of Growth and Development and Social Pediatric, Departement of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. Email: theibtm@yahoo.com

*Correspondence Author:

Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Jl Teungku Tanoh Abee, Kopelma Darussalam, Kec. Syiah Kuala, Kota Banda Aceh 24415, Indonesia.

Email: Herlinadimiati@usk.ac.id

Article History:

Received: April 13, 2025; Revised: May 20, 2025; Accepted: May 27, 2025; Published: June 13, 2025.

Publisher:

Politeknik Kesehatan Aceh Kementerian Kesehatan RI

© The Author(s). 2025 **Open Access** This article has been distributed under the terms of the *License Internasional Creative Commons Attribution 4.0*

Abstract

Obesity remains a significant nutritional issue in the pediatric population and is closely linked to metabolic disorders. According to the World Health Organization (2022), 160 million individuals aged 5-19 years are classified as obese. This study aimed to evaluate the association between central obesity and metabolic syndrome (MetS) in sports students. This cross-sectional study was conducted at Aceh Sports High School from May to August 2024, involving 43 students selected through simple random sampling. Although the sample size was relatively small, these findings offer valuable preliminary insights. The data collected included demographics, anthropometric measurements, blood pressure, and blood tests (glucose, HDL cholesterol, and triglycerides). Central obesity was assessed using waist circumference and MS was evaluated based on the NCEP ATP III criteria. Data were analyzed descriptively, followed by the chi-square test. The majority of the participants were not at risk of MS (51,2%). However, chi-square analysis revealed a statistically significant association between waist circumference and MetS (p<0.001, OR = 3.75 95% CI = 2,072-6,788). In conclusion, while most participants were not at risk of MetS, central obesity emerged as a strong predictor. These findings underscore the need for early screening and intervention, even in physically active adolescents.

Keywords: Central obesity, metabolic syndrome, adolescents, sport students

Abstrak

Obesitas tetap menjadi masalah gizi yang signifikan pada populasi pediatrik dan sangat berkaitan dengan gangguan metabolik. Menurut Organisasi Kesehatan Dunia (WHO) pada tahun 2022, sebanyak 160 juta individu berusia 5-19 tahun diklasifikasikan sebagai obesitas. Penelitian ini bertujuan untuk menilai hubungan antara obesitas sentral dengan sindrom metabolik (SM) pada siswa sekolah olahraga. Penelitian potong lintang ini dilakukan di Sekolah Khusus Olahraga Aceh pada Mei-Agustus 2024, melibatkan 43 siswa yang dipilih melalui simple random sampling. Meskipun ukuran sampel relatif kecil, temuan ini memberikan informasi awal yang penting. Pengumpulan data meliputi identitas dasar, pengukuran antropometri, tekanan darah, serta pemeriksaan darah (glukosa, kolesterol HDL, dan trigliserida). Obesitas sentral diukur menggunakan lingkar pinggang, dan MS dievaluasi berdasarkan kriteria NCEP ATP III. Data dianalisis secara deskriptif, kemudian dilanjutkan dengan uji Chi-square. Mayoritas peserta tidak berisiko mengalami MS (51,2%). Namun, analisis Chi-square menunjukkan adanya hubungan yang signifikan antara lingkar pinggang dan SM (p<0.001, OR = 3.75, CI 95% = 2.072 - 6.788). Kesimpulannya, meskipun sebagian besar peserta tidak berisiko mengalami MS, obesitas sentral muncul sebagai prediktor kuat. Temuan ini menekankan pentingnya skrining dan intervensi dini, bahkan pada remaja yang aktif secara fisik.

Kata Kunci: Obesitas sentral, sindrom metabolik, remaja, siswa sekolah olahraga

Introduction

Metabolic syndrome (MetS) is a group of metabolic conditions that elevate the risk of cardiovascular diseases, including high blood pressure, central obesity, and dyslipidemia. The prevalence of MetS has been steadily increasing even among children, making it a pressing public health concern. This rise in prevalence mirrors the growing rates of obesity affecting children and adolescents globally, including in Indonesia (Zhu et al., 2020; Magge et al., 2017). The study analyzing data from the 2013 Riskesdas reported a 5,93% prevalence of MetS among adolescents aged 15-24 years, based on the NCEPATP III criteria (Pratiwi ZA et al., 2017). In a targeted study of obese adolescents aged 13-16 years, 45,8% (27 subjects) had metabolic syndrome (Prihaningtyas et al., 2020).

According to Health 2022 WHO data, over 390 million children and adolescents aged 5-19 are affected by excess nutrition, of which 160 million are classified as obese. The obesity rate has surged dramatically, from 8% in 1990 to 20% in 2022 (Vaamonde & Álvarez-Món, 2020). A UNICEF report highlights a significant rise in overweight and obesity rates between 2010 and 2018 in Indonesia across nearly all age groups, from 9,2% to 20% among children aged 5-12 years, 1,9% to 14,8% among adolescents aged 13-18 years, and 21,7% to 35,4% among adults aged > 18 years (United Nations Children's Fund, 2022). Adolescents with obesity are more likely to develop obesity in adulthood. This trend is supported by the increase in obesity rates during the transition from adolescence to early adulthood, which rose from 10,9% to 22,1% between 2010 and 2015 (Dieny et al., 2015).

Obesity is also prevalent among student athletes, with a Philadelphia study reporting that 20% were overweight and 24% were obese (Kropa et al., 2016). Although physically active, student athletes are still at risk of obesity due to several factors, such as poor eating habits, low cardiorespiratory fitness, sedentary behavior outside of training, Relative Energy Deficiency in Sport (RED-S), and lifestyle changes during the off-season (Cleven et al., 2022; Oliveira & Guedes, 2016). Although physical activity is essential, it does not provide complete protection against obesity. A comprehensive approach, including balanced nutrition, regular aerobic activity, and reduced sedentary behavior, is required to minimize the risk of obesity in student athletes.

Obesity develops when consumption from food exceeds energy expenditure. This issue has become more common in society due to a phenomenon in which physical activity levels decline while children continue to consume high-calorie foods (Wu et al., 2016; Al Rahmad et al., 2020). Abdominal (central) obesity refers to the accumulation of fat in the skin of the abdominal wall and in the abdominal cavity (Soleha & Azzaky Bimandama, 2016).

Waist circumference is a basic, practical, and sensitive measure of central obesity. It was measured at the midpoint between the lower rib and iliac crest using a fixed tape measure (0.1 cm, taken horizontally at the end of exhalation (Bahar et al., 2012). As stated by the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III), a waist circumference at or above the 90th percentile for adolescents is considered abdominal obesity. This measurement is commonly used to screen for metabolic syndrome. Waist circumference is often preferred over Body Mass Index (BMI) for detecting central obesity because it directly measures fat accumulation around the abdomen. an area closely associated with metabolic risk. In contrast, BMI only reflects weight relative to height and does not differentiate between fat, muscle, and bone, nor does it indicate fat distribution (Ross et al., 2020).

The accumulation of intra-abdominal fat is more strongly linked to insulin resistance and hyperlipidemia than overall body fat. This build-up leads to an increase in the free fatty acids released during lipolysis, which can impair insulin sensitivity (Gregory, 2019). Furthermore, progressive accumulation of abdominal fat is a significant predictor of the risk of hypertension, type 2 diabetes, cardiovascular diseases, and other metabolic complications (Macpherson et al., 2016; Powell-Wiley et al., 2021).

Preventing obesity in the young population reduces the risk of MetS (Gregory, 2019). This can be achieved by promoting an active lifestyle from an early age and ensuring consistent physical activity throughout childhood and adolescence (Carson et al. 2016). This approach aligns with the principles of sports schools, which integrate physical activity into their educational curricula. In sports

schools, students engage in both academic and non-academic subjects with a focus on selecting a sport in which they receive intensive physical training. However, despite high levels of physical activity, studies have shown that student athletes are not immune to metabolic risk. Factors such as poor dietary habits, sedentary behavior outside training hours, and low cardiorespiratory fitness can contribute to a higher risk of MetS, even among physically active youth. Therefore, attending sports school does not necessarily guarantee a lower risk of metabolic syndrome. This study aimed to evaluate the relationship between central obesity, as determined by waist circumference, and metabolic syndrome in adolescents in Sports High School Aceh.

Methods

This analytical observational study was conducted at Aceh Sports High School from May to August 2024. The study focused on student athletes, a population of interest due to the paradoxical risk of central obesity and metabolic syndrome despite regular training, highlighting the importance of comprehensive health screening, even among active adolescents.

This cross-sectional study was conducted to evaluate the association between central obesity and metabolic syndrome in student athletes. Cross-sectional studies are efficient and practical study designs that provide a snapshot of a population at a specific point in time, making them ideal for assessing the prevalence of health conditions or behaviors. Conducting these studies is cost-effective and relatively quick, as they collect data only once and do not require follow-up. Additionally, they valuable for identifying associations between variables. However, it is important to note that cross-sectional studies cannot establish causality owing to their observational nature (Capili, 2021).

The sample consisted of high school students who met the inclusion criteria and were selected using simple random sampling via lottery. The minimum sample size was calculated using the following formula:

$$n = \left(\frac{Za^{2} (PQ)}{d}\right)$$

$$n = \left(\frac{1.96^{2} (0.13 \times (1-0.13))}{0.1}\right) = 42$$

Za = standard deviation of the error rate (1,96) P = disease proportion (0,13) Q = 1-P d = margin of error (10%)

The sample size was determined using a standard formula to estimate the population proportion with a specified level of precision. Based on a previous study, the estimated prevalence of metabolic syndrome among adolescents was 0,13 (Zhu et al., 2020). With a 95% confidence level (Z = 1,96) and a margin of error of 10% (0,10), the calculated minimum required sample size for this study was 42 participants. Participants aged 15-18 years enrolled at Aceh Sport School were eligible for inclusion if they provided written informed consent and completed all phases of the study. Students were excluded if they actively participated in a sports competition during the study period or were absent from school at the time of data collection. After applying the inclusion and exclusion criteria, 43 students were selected as study participants.

Data collection included name, age, and sex, followed by anthropometric measurements, such as height, weight, and waist circumference. Height and weight were measured using a calibrated stadiometer and digital scale. respectively, whereas waist circumference was measured at the midpoint between the lower margin of the last palpable rib and the top of the iliac crest using a non-stretchable measuring tape. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared (kg/m²). Blood pressure was measured using a calibrated digital sphygmomanometer after the participant rested for at least five minutes in a seated position. Venous blood were samples collected by a trained phlebotomist to assess random blood glucose, HDL cholesterol, and triglyceride levels using standardized laboratory kits and procedures. Waist circumference was used as an indicator of central obesity, whereas blood pressure and laboratory test results were used to assess the risk of metabolic syndrome. All data were collected by trained health personnel who had prior instructions undergone to consistency in measurement techniques and adherence to standardized protocols.

Metabolic syndrome was defined based on the NCEP ATP III criteria. Participants were classified as having metabolic syndrome if they met at least three of the following five conditions: waist circumference \geq 90th percentile, blood pressure \geq 90th percentile, triglycerides \geq 110 mg/dL, HDL cholesterol \leq 40 mg/dL, and blood glucose \geq 200 mg/dL. Individuals meeting at least one of these criteria are considered at risk for metabolic syndrome (Bekel & Thupayagale-Tshweneagae, 2020; DeBoer et al., 2019; Lung NH, 2002).

All data were electronically tabulated and analyzed using SPSS version 23. Descriptive analysis was used to summarize participants' characteristics. A chi-square (χ^2) test was conducted to assess the association between waist circumference and metabolic syndrome. Before performing the test, the assumptions were checked, including the requirement that the expected frequencies in each cell should be at least 5. Since the Chisquare test does not provide the strength of association, odds ratios (OR) with 95% confidence intervals (CI) were calculated to quantify the relationship. For continuous variables, normality was assessed using the Shapiro-Wilk test prior to any comparative analysis. This study was approved by the Ethics Committee of the Faculty of Medicine at Sviah (approval number. Kuala University 020/EA/FK/2024).

Result and Discussion

Table 1 shows that the study participants were predominantly male, comprising 58,1%, with most being aged 16 years (48,8%). This gender distribution contrasts with national education statistics, where 64,45% of general high school students are female (Badan Pusat Statistik, 2023) but aligns with trends observed in sports schools, which typically enroll more male students. This male predominance is relevant given that boys are generally more physically active than girls, potentially influencing body composition and obesity risk (Marques et al., 2016) (Hyde et al., 2020).

Furthermore, dietary habits differ by sex and influence obesity risk. Male tend to consume more red and processed meats, salty foods, and diets high in fats and sugars, with irregular eating patterns and lower overall diet quality. Females generally eat more vegetables and fiber-rich foods but are more prone to emotional

or impulsive eating. These differences suggest that males are at risk due to poor diet quality, whereas females may be affected by disordered eating behaviors. Sex-specific strategies are essential for effective obesity prevention (Feraco et al., 2024).

Table 1. Characteristics of respondents (n=43)

Table 1. Characteristics of respondents (n=43)						
Characteristic	n	%				
Gender						
Male	25	58,1				
Female	18	41,9				
Age (years)						
15	2	4,7				
16	21	48,8				
17	13	30,2				
18	7	16,3				
BMI						
Underweight	5	11,6				
Normal	32	74,5				
Overweight	5	11,6				
Obese	1	2,3				
Waist Circumference						
Normal (<percentile 90)<="" td=""><td>30</td><td>69,8</td></percentile>	30	69,8				
Abnormal (>percentile 90)	13	30,2				
Blood Pressure						
Normal (< percentile 90)	43	100				
Elevated	0	0				
Random Blood Glucose						
Normal (<200 mg/dl)	43	100				
Elevated (≥200 mg/dl)	0	0				
HDL Cholesterol						
Normal (≥40 mg/dl)	39	90,7				
Elevated (<40 mg/dl)	4	9,3				
Triglycerides						
Normal (<110 mg/dl)	32	74,4				
Elevated (≥110 mg/dl)	11	25,6				
Metabolic Syndrome Risk						
0 risk	22	51,2				
1 risk	15	34,9				
2 risk	5	11,6				
3 risk	1	2,3				

The vast majority of participants (74,5%) had a normal nutritional status, while underweight, overweight, and obese categories represented a smaller portion. This distribution is more favorable compared to the national adolescent data in Indonesia, where the prevalence of overweight and obesity among adolescents aged 13–18 years was 148% (United Nations Children's Fund, 2022). The lower prevalence observed in this study may be

attributable to students' regular participation in structured physical training, a characteristic of sports school curricula. Similar findings have been reported in athlete populations, where regular exercise is associated with healthier BMI ranges and improved metabolic profiles (Zhu et al., 2020) (Silva et al., 2017). Despite high physical activity levels, 30,2% of the participants had waist circumferences above the 90th percentile, suggesting central obesity. This rate is higher than the 21,8% prevalence reported among Chinese adolescents, possibly due to contextual factors, such as diet, training intensity, or differences in measurement criteria (Zhu et al., 2020).

The majority of study participants were not at risk for metabolic syndrome (51,2%).

However, 46,5% had one or two risk factors and one student (2,3%) met the full diagnostic criteria. This result aligns with a previous study conducted in China reported that 2,62% of the pediatric population was diagnosed with metabolic syndrome (Zhu et al., 2020). Similarly, according to a 2016 Korean study, 2.1% of 2,330 adolescents aged 10–19 years fulfilled the requirements for metabolic syndrome (Kim & So, 2016). These findings underscore that even physically active adolescents may face metabolic risks, especially in the presence of central obesity.

The results of bivariate analysis of waist circumference and metabolic syndrome are presented in Table 2.

Table 2. Chi Square test between waist circumference (WC) and metabolic syndrome

Variable	At Risk	No Risk	— OR	P value	CI 95%
	n (%)	n (%)			
Abnormal	13 (61,9)	0 (0,0)	2.75	<0.001	2072 6700
Normal	8 (38,1)	22 (100,0)	3,75	<0,001	2,072-6,788

Table 2 indicates a strong association circumference between waist and prevalence of metabolic syndrome in teenagers at sports high schools in Aceh Province, with a pvalue of <0,001. According to the findings, students with a larger waist circumference are 3,75 times more inclined to develop metabolic syndrome than those with a normal waist circumference. Notably, 13 of the 21 students identified as being at risk for metabolic syndrome had elevated waist circumference, while none of the students with normal waist circumference measurements exhibited any of metabolic risk factors. This underscores the critical role of central obesity in the pathogenesis of MetS. Waist circumference is a reliable marker of visceral fat, which is strongly linked insulin resistance. to dyslipidemia, and hypertension, which are the key components of metabolic syndrome. Even among physically active students, a normal waist circumference appears to offer a protective effect against metabolic abnormalities. This emphasizes the importance of monitoring abdominal fat, rather than relying solely on general body weight or BMI, to assess metabolic risk (Darsini et al., 2020; Silva et al., 2017).

A 2021 study in Saudi Arabia found that teenagers with a waist circumference greater than the 90th percentile had significantly more risk factors for metabolic syndrome (≥2 risk factors, 64,87%), whereas those with a normal waist circumference typically had only one risk factor (Alowfi et al., 2021). The study in East Java with 208 obese teenagers found a strong association between waist circumference and metabolic syndrome (Widjaja et al., 2023). These studies validate the current findings and highlight the importance of monitoring waist circumference as a critical marker for metabolic syndrome, even among physically active students with a normal BMI. Central obesity can exist independently of general obesity, and may be the earliest and most consistent indicator of cardiometabolic risk.

Approximately one-third of the total body fat can be measured using subcutaneous fat. The size of subcutaneous fat represents fat deposits beneath the skin, providing an approximation of the overall body fat. This anthropometric assessment is highly accurate in assessing obesity in children and adolescents (Nuraini & Murbawani, 2019). The **NCEP** ATP recommends waist circumference at or above the 90th percentile as the cutoff for defining abdominal obesity in children and adolescents (Lung, 2002). Although Body Mass Index (BMI) and waist circumference are the two most widely used parameters for examining overall and abdominal obesity, previous studies have shown that people with the same BMI can have significant variances in abdominal fat mass. Some individuals may have a normal BMI but still exhibit central obesity, as shown in the Bogalusa Heart Study, which found that 9,22% of individuals aged 4–18 years with a normal BMI had central obesity (Mokha et al., 2010; Song et al., 2019).

Although students at sports schools are generally assumed to be physically fit, several factors can contribute to abnormal waist circumference in this population. During adolescence, natural growth and hormonal changes can lead to increases in waist, which may not always reflect poor health (Aars et al., 2019). Inconsistent physical activity due to injuries or academic demands, along with unhealthy dietary habits such as consumption of processed foods and sugary drinks, can lead to central fat accumulation despite regular training (Błaszczyk-Bębenek et al., 2019). Moreover, psychological stress may elevate cortisol levels. which is linked to increased abdominal fat (Ma et al., 2022). These factors emphasize that regular physical activity alone may not be sufficient to prevent central obesity, thus underscoring the need for a comprehensive approach to lifestyle habits.

Abnormal waist circumference is linked to of higher risk metabolic syndrome a components. including hypertension. hypercholesterolemia, and type 2 diabetes. Excess intra-abdominal fat disrupts blood pressure regulation and lipid metabolism, lowers adiponectin levels, and increases free fatty acids, all of which impair insulin function. These changes can lead to insulin resistance, initially causing hyperinsulinemia, eventually progressing to type 2 diabetes if glucose regulation fails (Darsini et al. 2020). While these mechanisms explain the biological link, this study's cross-sectional design, small sample size, and lack of dietary, genetic, and psychosocial data limit the causal interpretation. Nonetheless, the findings underscore the importance of waist circumference as a screening tool in adolescent health programs. particularly for student athletes. Tailored school-based interventions focusing nutrition, stress management, and routine waist circumference monitoring could help mitigate future cardiometabolic risk in Indonesian adolescents.

Conclusion

This study found a significant association between central obesity—measured by waist circumference above the 90th percentile—and the risk of metabolic syndrome among adolescents in a sports high school. While obesity is a key predictor of metabolic and cardiovascular complications, these findings highlight the urgent need for routine screening of waist circumference and other metabolic indicators, even in physically active student populations.

Schools should implement periodic health assessments and consider modifying training programs to address not just performance, but also long-term metabolic health. Additionally, integrating targeted nutrition education and stress management strategies could enhance preventive efforts. However, due to the study's small sample size and cross-sectional design, further longitudinal research is needed to explore causal relationships and evaluate the effectiveness of intervention programs.

Acknowledgement

The author expresses gratitude to lecturers, friends, and family for their support and thanks the study respondents for their participation.

References

Aars, N. A., Jacobsen, B. K., Morseth, B., Emaus, N., & Grimsgaard, S. (2019). Longitudinal changes in body composition and waist circumference by self-reported levels of activity leisure physical in adolescents: the Tromsø study, Futures. BMC Sports Science, Medicine and Rehabilitation, 37. 11(1),https://doi.org/10.1186/s13102-019-0150-8

Alowfi, A., Binladen, S., Irqsous, S., Khashoggi, A., Khan, M. A., & Calacattawi, R. (2021). Metabolic Syndrome: Prevalence and Risk Factors among Adolescent Female Intermediate and Secondary Students in Saudi Arabia. International Journal of Environmental Research and Public Health, 18(4), 2142. https://doi.org/10.3390/ijerph18042142

- Al Rahmad, A. H., Fitri, Y., Suryana, S., Mulyani, N. S., Fajriansyah, F., & Abdul, H. (2020). Analysis of the relationship between nutritional influence with the obesity phenomenon among primary school students in Banda Aceh, Aceh Province, Indonesia. *Macedonian Journal of Medical Sciences*, 8(E), 267–270. https://doi.org/10.3889/oamjms.2020.3471
- Badan Pusat Statistik. (2023). *Statistik Pendidikan 2023*.
- Bahar, A., Hosseini Esfahani, F., Asghari Jafarabadi, M., Mehrabi, Y., & Azizi, F. (2012). The Structure of Metabolic Syndrome Components Across Follow-Up Survey From Childhood to Adolescence. *International Journal of Endocrinology and Metabolism*, 11(1), 16–22. https://doi.org/10.5812/ijem.4477
- Bekel, G. E., & Thupayagale-Tshweneagae, G. (2020). Prevalence and associated factors of metabolic syndrome and its individual components among adolescents. *International Journal of Public Health Science* (*IJPHS*), 9(1), 46. https://doi.org/10.11591/ijphs.v9i1.2038
- Błaszczyk-Bębenek, E., Piórecka, B., Płonka, M., Chmiel, I., Jagielski, P., Tuleja, K., & Schlegel-Zawadzka, M. (2019). Risk Factors and Prevalence of Abdominal Obesity among Upper-Secondary Students. International Journal of Environmental Research and Public Health, 16(10), 1750. https://doi.org/10.3390/ijerph16101750
- Capili, B. (2021). Cross-Sectional Studies. *AJN, American Journal of Nursing*, *121*(10), 59–62. https://doi.org/10.1097/01.NAI.0000794
 - https://doi.org/10.1097/01.NAJ.0000794 280.73744.fe
- Carson, V., Hunter, S., Kuzik, N., Gray, C. E., Poitras, V. J., Chaput, J.-P., Saunders, T. J., Katzmarzyk, P. T., Okely, A. D., Connor Gorber, S., Kho, M. E., Sampson, M., Lee, H., & Tremblay, M. S. (2016). Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. *Applied Physiology, Nutrition, and Metabolism*, 41(6), 240–265. https://doi.org/10.1139/apnm-2015-0630
- Cleven, L., Krell-Roesch, J., Schmidt, S. C. E.,

- Dziuba, A., Bös, K., Jekauc, D., & Woll, A. (2022). Longitudinal association between physical activity and the risk of incident metabolic syndrome in middle-aged adults in Germany. *Scientific Reports*, *12*(1), 19424. https://doi.org/10.1038/s41598-022-24052-5
- Darsini, D., Hamidah, H., Notobroto, H. B., & Cahyono, E. A. (2020). Health Risks Associated with High Waist Circumference: A Systematic Review. *Journal of Public Health Research*, 9(2), 1811.
- https://doi.org/10.4081/jphr.2020.1811
- DeBoer, M. D., Filipp, S. L., & Gurka, M. J. (2019). Geographical variation in the prevalence of obesity and metabolic syndrome among US adolescents. *Pediatric Obesity*, *14*, 1–9. https://doi.org/10.1111/ijpo.12483
- Dieny, F. F., Widyastuti, N., & Fitranti, D. Y. (2015). Sindrom metabolik pada remaja obes: prevalensi dan hubungannya dengan kualitas diet. *Jurnal Gizi Klinik Indonesia*, 12(1), 1–11. https://doi.org/https://doi.org/10.22146/ijcn.22830
- Feraco, A., Armani, A., Gorini, S., Camajani, E., Quattrini, C., Filardi, T., Karav, S., Strollo, R., Caprio, M., & Lombardo, M. (2024). Gender Differences in Dietary Patterns and Eating Behaviours in Individuals with Obesity. *Nutrients*, 16(23), 4226. https://doi.org/10.3390/nu16234226
- Gregory, J. W. (2019). Prevention of Obesity and Metabolic Syndrome in Children. *Frontiers in Endocrinology*, 10(669), 1–9. https://doi.org/10.3389/fendo.2019.0066
- Hyde, E. T., Omura, J. D., Fulton, J. E., Lee, S. M., Piercy, K. L., & Carlson, S. A. (2020). Disparities in Youth Sports Participation in the U.S., 2017–2018. *American Journal of Preventive Medicine*, 59(5), 207–210. https://doi.org/10.1016/j.amepre.2020.0 5.011
- Kim, S., & So, W.-Y. (2016). Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. *Nutrients*, 8(10), 588. https://doi.org/10.3390/nu8100588
- Kropa, J., Close, J., Shipon, D., Hufnagel, E., Terry,

- C., Oliver, J., & Johnson, B. (2016). High Prevalence of Obesity and High Blood Pressure in Urban Student-Athletes. *The Journal of Pediatrics*, *178*, 194–199. https://doi.org/10.1016/j.jpeds.2016.07.0 06
- Lung NH. (2002). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. *Circulation*, 106(25), 3143–3421. https://doi.org/https://doi.org/10.1161/circ.106.25.3143
- Ma, L., Liu, X., Yan, N., Gan, Y., Wu, Y., Li, Y., Chu, M., Chiu, D. T., & Ma, L. (2022). Associations Between Different Cortisol Measures and Adiposity in Children: A Systematic Review and Meta-Analysis. Frontiers in Nutrition, 9, 879256. https://doi.org/10.3389/fnut.2022.87925
- Macpherson, M., Groh, M. De, Loukine, L., Prud, D., & Dubois, L. (2016). Prevalence of metabolic syndrome and its risk factors in Canadian children and adolescents: Canadian Health Measures Survey Cycle 1 (2007-2009) and Cycle 2 (2009-2011). Health Promot Chronic Dis Prev Can, 36(2), 32–40.
 - https://doi.org/10.24095/hpcdp.36.2.03
- Magge, S. N., Goodman, E., Armstrong, S. C., Daniels, S., Corkins, M., de Ferranti, S., Golden, N. H., Kim, J. H., Magge, S. N., Schwarzenberg, S. J., Sills, I. N., Casella, S. J., DeMeglio, L. A., Gonzalez, J. L., Kaplowitz, P. B., Lynch, J. L., Wintergerst, K. A., Bolling, C. F., Armstrong, S. C., ... Schwartz, R. P. (2017). The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. *Pediatrics*, 140(2), 12–30. https://doi.org/10.1542/peds.2017-1603
- Marques, A., Ekelund, U., & Sardinha, L. B. (2016). Associations between organized sports participation and objectively measured physical activity, sedentary time and weight status in youth. *Journal of Science and Medicine in Sport*, 19(2), 154–157.
 - https://doi.org/10.1016/j.jsams.2015.02. 007
- Mokha, J. S., Srinivasan, S. R., DasMahapatra, P.,

- Fernandez, C., Chen, W., Xu, J., & Berenson, G. S. (2010). Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. *BMC Pediatrics*, 10(1), 73. https://doi.org/10.1186/1471-2431-10-73
- Nuraini, A., & Murbawani, E. A. (2019). Hubungan Antara Ketebalan Lemak Abdominal dan Kadar Serum High Sensitivity C-Reactive Protein (HS-CRP) pada Remaja. *Journal of Nutrition College*, 8(2), 81.
- https://doi.org/10.14710/jnc.v8i2.23817 Oliveira, R. G. de, & Guedes, D. P. (2016). Physical Activity, Sedentary Behavior, Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: Systematic and Review Meta-Analysis of Observational **PLOS** Evidence. ONE. 11(12), e0168503. https://doi.org/10.1371/journal.pone.016 8503
- Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J.-P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., & St-Onge, M.-P. (2021). Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. *Circulation*, 143(21), 984–1010.
 - https://doi.org/10.1161/CIR.0000000000 000973
- Pratiwi ZA, Hasanbasri M, & Huriyati M. (2017). Penentuan titik potong skor sindroma metabolik remaja dan penilaian validitas diagnostik parameter antropometri: analisis Riskesdas 2013. *Jurnal Gizi Klinik Indonesia*, 4(2), 80–89.
- Prihaningtyas, R. A., Widjaja, N. A., Hanindita, M. H., & Irawan, R. (2020). Diet dan Sindrom Metabolik pada Remaja Obesitas. *Amerta Nutrition*, 4(3), 191. https://doi.org/10.20473/amnt.v4i3.2020.191-197
- Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A., Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J.-C., Eckel, R. H., Matsuzawa, Y., & Després, J.-P. (2020). Waist circumference as a vital sign

- in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. *Nature Reviews Endocrinology*, 16(3), 177–189. https://doi.org/10.1038/s41574-019-0310-7
- Silva, A. M., Matias, C. N., Santos, D. A., Thomas, D., Bosy-Westphal, A., Müller, M. J., Heymsfield, S. B., & Sardinha, L. B. (2017). Compensatory Changes in Energy Balance Regulation over One Athletic Season. *Medicine & Science in Sports & Exercise*, 49(6), 1229–1235. https://doi.org/10.1249/MSS.00000000000000000001216
- Soleha, T. U., & Azzaky Bimandama, M. (2016). Hubungan Sindrom Metabolik dengan Penyakit Kardiovaskular. *Majority*, *5*(2), 49–55.
- Song, P., Zhang, Y., Yu, J., Zha, M., Zhu, Y., Rahimi, K., & Rudan, I. (2019). Global Prevalence of Hypertension in Children. *JAMA Pediatrics*, 173(12), 1154–1163. https://doi.org/10.1001/jamapediatrics.2019.3310
- United Nations Children's Fund. (2022). Landscape Analysis of Overweight and Obesity in Indonesia. In *Unicef Indonesia*.

- Vaamonde, J. G., & Álvarez-Món, M. A. (2020).

 Obesidad y sobrepeso. *Medicine Programa de Formación Médica Continuada Acreditado, 13*(14), 767–776. https://doi.org/10.1016/j.med.2020.07.0 10
- Widjaja, N. A., Arifani, R., & Irawan, R. (2023). Value of waist-to-hip ratio as a predictor of metabolic syndrome in adolescents with obesity. *Acta Bio-Medica: Atenei Parmensis*, 94(3), e2023076. https://doi.org/10.23750/abm.v94i3.13755
- Wu, Y.-E., Zhang, C.-L., & Zhen, Q. (2016). Metabolic syndrome in children (Review). Experimental and Therapeutic Medicine, 12(4), 2390–2394. https://doi.org/10.3892/etm.2016.3632
- Zhu, Y., Zheng, H., Zou, Z., Jing, J., Ma, Y., Wang, H., Luo, J., Zhang, X., Luo, C., Wang, H., Zhao, H., Pan, D., Sangild, P., Karmacharya, B. M., Ma, J., & Chen, Y. (2020). Metabolic Syndrome and Related Factors in Chinese Children and Adolescents: Analysis from a Chinese National Study. *Journal of Atherosclerosis and Thrombosis*, 27(6), 534–544.

https://doi.org/10.5551/jat.50591