Supp. File(s): Surat Pernyataan Etika Publikasi
Determination of vitamin D3 encapsulated in liprotide β-lactoglobulin crosslink oleic acid by HPLC and SEM
Supp. File(s): Surat Pernyataan Etika Publikasi
Vitamin D is an unstable compound to light, heat, and certain chemicals, so it is easily degraded under various conditions. Therefore, instability is achieved through the encapsulation method using complex protein carrier compounds with fatty acids known as liprotide. This study aims to determine vitamin D3. Method, the determination of vitamin D3 was analyzed, including the determination of vitamin D3 standard eluents, calibration curve, and determining the retention time of vitamin D3 encapsulated in liprotide using HPLC (High-Performance Liquid Chromatography). Morphology of vitamin D3 encapsulated in liprotide using SEM (Scanning Electron Microscopy). The results showed that the standard vitamin D3 HPLC analysis using acetonitrile: methanol and acetonitrile: aquabidest obtained two peaks. Butanol: n-hexane eluent obtained one peak with a retention time of 2,170 minutes. The results of the standard calibration curve for vitamin D3 at a linearity value of R2 = 0,9997 and f(x) = 14,928x-117,930. The same retention time was obtained for vitamin D3 encapsulated in liprotide. Conclusion, an enlargement of the cubic structure, which occurred due to the encapsulation of vitamin D3 by the liprotide-forming micelles.
Supplement Files
Keywords : β-lactoglobulin, HPLC, Liprotide, Oleic acid, SEM, Vitamin D3
- Alloubani, A., Akhu-Zaheya, L., Samara, R., Abdulhafiz, I., Saleh, A., & Altowijri, A. (2019). Relationship between vitamin D deficiency, diabetes, and obesity. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1457-1461. https://doi.org/10.1016/j.dsx.2019.02.021
- Almarria, F., Haq, N., Alanazi, F. K., Mohsin, K., Alsarra, I. A., Aleanizy, F. S., & Shakeel, F. (2017). Solubility and thermodynamic function of vitamin D3 in different mono solvents. Journal of Molecular Liquids, 229, 477-481. https://doi.org/10.1016/j.molliq.2016.12.105
- Anjani, G. (2014). A Study of Encapsulation and Antioxidant Properties of Genistein in Caseinate and Liposome Systems. Kanazawa: Kanazawa University.
- Buyukuslu, N., Esin, K., Hizli, H., Sunal, N., Yigit, P., & Garipagaoglu, M. (2014). Clothing preference affects vitamin D status of young women. Nutrition Research, 34(8), 688–693. http://dx.doi.org/10.1016/j.nutres.2014.07.012
- Cashman, K. D. (2015). Vitamin D: Dietary requirements and food fortification as a means of helping achieve adequate vitamin D status. Journal of Steroid Biochemistry & Molecular Biology, 148, 19-26. https://doi.org/10.1016/j.jsbmb.2015.01.023
- Chetta, K. E., Alcorn, J. L., Baatz, J. E., & Wagner, C. L. (2021). Cytotoxic lactalbumin-oleic acid complexes in the human milk diet of preterm infants. Nutrients, 13(12), 4336. https://doi.org/10.3390/nu13124336
- Cribb, V. L., Northstone, K., Hopkins, D., & Emmett, P. M. (2015). Sources of vitamin D and calcium in the diets of preschool children in the UK and the theoretical effect of food fortification. Journal of Human Nutrition and Dietetics, 28, 583–592. doi:10.1111/jhn.12277
- Fang, B., Zhang, M., Jiang, L., Jing, H., & Ren, F. Z. (2012). Influence of pH on the structure and oleic acid binding ability of bovine α-lactalbumin. The protein journal, 31, 564–572. https://doi.org/10.1007/s10930-012-9434-5
- Fang, B., Zhang, M., Tian, M., & Ren, F. (2015). Self-assembled β-lactoglobulin–oleic acid and β-lactoglobulin–linoleic acid complexes with antitumor activities. Journal of dairy science, 98(5), 2898-2907. https://doi.org/10.3168/jds.2014-8993
- Fatemeh, M., Perera, C. O., Fedrizzi, B., Abernethy, G., & Chen, H. (2017). Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chemistry, 219, 373-381. http://dx.doi.org/10.1016/j.foodchem.2016.09.146
- Frislev, H. S., Jessen, C. M., Oliveira, C. L., Pedersen, J. S., & Otzen, D. E. (2016). Liprotides made of α-lactalbumin and cis fatty acids form core–shell and multi-layer structures with a common membrane-targeting mechanism. BBA - Proteins and Proteomics, 1864(7), 847-859. https://doi.org/10.1016/j.bbapap.2016.04.003
- Ismail, R., & Csóka, I. (2017). Novel strategies in the oral delivery of antidiabetic peptide drugs–Insulin, GLP 1 and its analogs. European Journal of Pharmaceutics and Biophar maceutics, 115, 257-267. https://doi.org/10.1016/j.ejpb.2017.03.015
- Kaspersen, J. D., Pedersen, J. N., Hansted, J. G., Nielsen, S. B., Sakthivel, S., Wilhelm, K., Pedersen, J. S. (2014). Generic structures of cytotoxic liprotides: nano‐sized complexes with oleic acid cores and shells of disordered proteins. Chembiochem, 15, 2693-2702. https://doi.org/10.1002/cbic.201402407
- Lanin, S. N., Platonova, S. A., Vinogradov, A. E., Lanina, K. S., Nesterenko, E. P., & Nesterenko, P. N. (2020). Comparative study of different polar adsorbents for adsorption of water soluble vitamins. Adsorption, 26, 339–348. https://doi.org/10.1007/s10450-019-00186-3
- Li, D., Liu, Y., Ma, Y., & Liu, Y. (2022). Fabricating hydrophilic fatty acid-protein particles to encapsulate fucoxanthin: Fatty acid screening, structural characterization, and thermal stability analysis. Food Chemistry, 382, 132311. https://doi.org/10.1016/j.foodchem.2022.132311
- Malik, M. I. (2020). Critical parameters of liquid chromatography at critical conditions in context of poloxamers: pore diameter, mobile phase composition, temperature and gradients. Journal of Chromatography A, 1609, 460440. https://doi.org/10.1016/j.chroma.2019.460440
- Nadeem, A., Ho, J. C., Tran, T. H., Paul, S., Granqvist, V., Despretz, N., & Svanborg, C. (2019). Beta-sheet-specific interactions with heat shock proteins define a mechanism of delayed tumor cell death in response to HAMLET. Journal of molecular biology, 431(14), 2612-2627. https://doi.org/10.1016/j.jmb.2019.05.007
- Pedersen, J. N., Frislev, H. K., Pedersen, J. S., & Otzen, D. (2020). Structures and mechanisms of formation of liprotides. BBA - Proteins and Proteomics, 1868(11), 140505. https://doi.org/10.1016/j.bbapap.2020.140505
- Rafeeq, H., Ahmad, S., Tareen, M. B. K., Shahzad, K. A., Bashir, A., Jabeen, R., & Shehzadi, I. (2020). Biochemistry of fat soluble vitamins, sources, biochemical functions and toxicity. Haya: The Saudi Journal of Life Sciences, 5(6), 188-196. https://doi.org/10.36348/sjls.2020.v05i09.007
- Rodwell, V., Bender , D., Botham, K., Kennelly, P., & Wei. (2015). Harper’s illustrated biochemistry 13th ed. New York: The McGraw-Hill Education.
- Sahu, P. K., Rao, R. N., Cecchi, T., Swain, S., Patro, C. S., & Panda, J. (2018). An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611. https://doi.org/10.1016/j.jpba.2017.05.006
- Salah, M., Mansour, M., Zogon, D., & Xu, X. (2020). Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Research International, 137, 109635. https://doi.org/10.1016/j.foodres.2020.109635
- Sharma, K., Mogensen, K. M., & Robinson, M. K. (2019). Pathophysiology of critical illness and role of nutrition. Nutrition in clinical practice, 34(1), 12-22. https://doi.org/10.1002/ncp.10232
- Stability-Indicating HPLC–UV Method for Vitamin D3 Determination in Solutions, Nutritional Supplements and Pharmaceuticals. (2016). Journal of Chromatographic Science, 54, 1180–1186. doi:https://doi.org/10.1093/chromsci/bmw048
- Temova, Ž., & Roškar, R. (2016). Stability-Indicating HPLC–UV Method for Vitamin D3 Determination in Solutions, Nutritional Supplements and Pharmaceuticals. Journal of Chromatographic Science, 54, 1180–1186. https://doi.org/10.1093/chromsci/bmw048
- Yin, S., Yang, Y., Wu, L., Li, Y., & Sun, C. (2019). Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. Trends in Analytical Chemistry, 110, 204-220. https://doi.org/10.1016/j.trac.2018.11.008
- Zenebe, T., Ahmed, N., Kabeta, T., & Kebede, G. (2014). Review on medicinal and nutritional values of goat milk. Academic Journal of Nutrition, 3(3), 30-39. https://doi.org/10.5829/idosi.ajn.2014.3.3.93210


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.