The effect of EKORMIN on rats with diabetes mellitus model: effectiveness on fasting blood glucose, MDA, and insulin levels

Siti Nurjana Kurniaty Tanaiyo* -  Master Program of Nutrition Science of Postgraduate, Universitas Sebelas Maret, Indonesia
Budiyanti Wiboworini -  Department of Nutrition, Faculty of Medicine, Universitas Sebelas Maret, Indonesia
Setyo Sri Rahardjo -  Department of Nutrition, Faculty of Medicine, Universitas Sebelas Maret, Indonesia

Supp. File(s): Research Results Research Instrument Research Instrument common.other

Antioxidant use for additional diabetes mellitus therapy is growing, such as  okra (Abelmoschus esculentus) and turmeric (Curcuma longa), which are rich in flavonoids and have beneficial effects on diabetes mellitus. This study aimed to determine the effects of okra turmeric extract (EKORMIN) on Fasting Blood Glucose (FBG), malondialdehyde (MDA), and insulin levels in diabetic rats. The research was conducted from December to January 2022 at PSPG UGM using experimental research with a pre-posttest-controlled group design. White male Wistar rats (n = 35) randomly grouped into five: negative control (STZ-NA), positive control (STZ-NA+metformin 1,8 mg/200 gBW), P1 (STZ-NA+EKORMIN low dose 130,5;110,5 mg/kgBW), P2 (STZ-NA+EKORMIN moderate dose 261;221 mg/kgBW), P3 (STZ-NA+EKORMIN high dose 522;442 mg/kgBW). The intervention lasted 14 days. Data analysis was performed using one-way analysis of variance statistical tests and post hoc follow-up tests. EKORMIN in all doses, EKORMIN reduced FBG and MDA levels and increased insulin levels (p<0,05). P2 and P3 were not significantly different from the metformin (PG) group (p>0,05). The decrease in FBG (-167,05±-2,8 vs -175,86±-1,4 mg/dL) and MDA levels (-6,32±0,33 vs -7,98±0,07 nmol/ml) P3 was higher than P2. Similarly for increased insulin levels (121,47±3,03 and 164,09±4,48 pg/ml). EKORMIN was effective in reducing FBG and MDA levels and increased insulin levels in diabetic rats. EKORMIN has antidiabetic effects and has potential for type 2 diabetes mellitus treatment.

Supplement Files

Keywords : Abelmoschus esculentus, curcuma longa, diabetes mellitus, MDA, insulin

  1. Abd El-Aziz, S. M., Raslan, M., Afify, M., Abdelmaksoud, M. D. E., & El-Nesr, K. A. (2021). Antidiabetic effects of curcumin/zinc oxide nanocomposite in streptozotocin-induced diabetic rats. IOP Conference Series: Materials Science and Engineering, 1046(1), 012023. https://doi.org/10.1088/1757-899x/1046/1/012023
  2. Abdel Diam, M. M., Samak, D. H., El-Sayed, Y. S., Aleya, L., Alarifi, S., & Alkahtani, S. (2019). Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ Sci Pollut Res Int., 26(4), 3659–3665. https://doi.org/doi: 10.1007/s11356-018-3907-9. Epub 2018 Dec 8.
  3. Aditama, A. P. R. (2020). Antidiabetic activities of 96% ethanol extract of Abelmoschus esculentus on Balb-C mice strain. Farmasains : Jurnal Farmasi Dan Ilmu Kesehatan, 4(2), 21–25. https://doi.org/10.22219/farmasains.v4i2.10718
  4. Alhadramy, M. S. (2016). Diabetes and oral therapies: A review of oral therapies for diabetes mellitus. Journal of Taibah University Medical Sciences, 11(4), 317–329. https://doi.org/10.1016/j.jtumed.2016.02.001
  5. Amadi, J. A., Amadi, P. U., & Njoku, U. C. (2021). Okra Modulates Regulatory Enzymes and Metabolites of Glucose-Utilizing Pathways in Diabetic Rats. Journal of the American College of Nutrition, 40(8), 689–698.
  6. American Diabetes Association. (2019). Standards of Medical Care in Diabetes - 2019. In Diabetes Care (Vol. 42). Retrieved from http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
  7. Barawade, A., Bhalerao, S., & Goudar, S. (2019). A cross-sectional study of serum level of malondialdehyde in type 2 diabetes mellitus individuals of rural population of North Karnataka. National Journal of Physiology, Pharmacy and Pharmacology, 9(9), 934. https://doi.org/10.5455/njppp.2019.9.0724517072019
  8. Cas, M. D., & Ghidoni, R. (2019). Dietary curcumin: Correlation between bioavailability and health potential. Nutrients, 11(9), 1–14. https://doi.org/10.3390/nu11092147
  9. Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., … Mirza, W. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8(6), 1–12. https://doi.org/10.3389/fendo.2017.00006
  10. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
  11. Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine and Pharmacotherapy, 146. https://doi.org/10.1016/j.biopha.2021.112560
  12. Duan, J., Yang, M., Liu, Y., Xiao, S., & Zhang, X. (2022). Curcumin protects islet beta cells from streptozotocin‑induced type 2 DM injury via its antioxidant effects. Endokrynologia Polska, 73(6), 942–946.
  13. Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137–149. https://doi.org/10.1016/j.diabres.2013.11.002
  14. Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. In Archives of Toxicology (Vol. 94). https://doi.org/10.1007/s00204-020-02689-3
  15. Hasanpour, M., Iranshahy, M., & Iranshahi, M. (2020). The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomedicine and Pharmacotherapy, 128. https://doi.org/10.1016/j.biopha.2020.110263
  16. Hay, E., Lucariello, A., Contieri, M., Esposito, T., De Luca, A., Guerra, G., & Perna, A. (2019). Therapeutic effects of turmeric in several diseases: An overview. Chemico-Biological Interactions, 310. https://doi.org/10.1016/j.cbi.2019.108729
  17. Hendri Faisal, & Handayani, S. (2019). Comparison of Antioxidant Activity of Ethanol Extract of Fruit and Okra Leaves (Abelmoschus esculentus L. Moench) with DPPH and ABTS Methods. Indonesian Journal of Pharmaceutical and Clinical Research, 2(2), 6–13. https://doi.org/10.32734/idjpcr.v2i2.2815
  18. Husen, S. A., Ansori, A. N. M., Hayaza, S., Susilo, R. J. K., Zuraidah, A. A., Winarni, D., … Darmanto, W. (2019). Therapeutic effect of okra (Abelmoschus esculentus moench) pods extract on streptozotocin-induced type-2 diabetic mice. Research Journal of Pharmacy and Technology, 12(8), 3703–3708. https://doi.org/10.5958/0974-360X.2019.00633.4
  19. Liao, Z., Zhang, J., Liu, B., Yan, T., Xu, F., & Xiao, F. (2019). Polysaccharide from Okra (Abelmoschus esculentus (L.) Moench) Improves Antioxidant Capacity via PI3K/ATK Pathways and Nrf2 Translocation in a Type 2 Diabetes Model. Molecules, 24(10), 1906.
  20. Mahan, L. Kathleen and Raymond, J. L. (2017). Krauses’s Food & The Nutrition Care Process (Fourteenth). https://doi.org/10.1111/j.1753-4887.2004.tb00011.x
  21. Majd, N. E., Tabandeh, M. R., Shahriari, A., & Soleimani, Z. (2018). Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Cell Journal, 20(1), 31–40. https://doi.org/10.22074/cellj.2018.4819
  22. Nguekouo, P. T., Kuate, D., Kengne, A. P. N., Woumbo, C. Y., Tekou, F. A., & Oben, J. E. (2018). Effect of boiling and roasting on the antidiabetic activity of Abelmoschus esculentus (Okra) fruits and seeds in type 2 diabetic rats. Journal of Food Biochemistry, 42(6), 1–10. https://doi.org/10.1111/jfbc.12669
  23. Onaolapo, A. Y., & Olakunle, J. O. (2018). Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Current Diabetes Reviews, 16(1), 12–25. https://doi.org/10.2174/1573399814666181031103930
  24. Padhi, S., Nayak, A. K., & Behera, A. (2020). Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine and Pharmacotherapy, 131, 110708. https://doi.org/10.1016/j.biopha.2020.110708
  25. Pourmahmoudi, A., Talebianpoor, M. S., Nejad, T. V., Mozafari, M., Talebianpoor, M. S., & Hosseinikia, M. (2021). Effect of Curcumin on Lipid Profile, Oxidative Stress and Blood Glucose in Experimental Dexamethasone-Induced Diabetes in Rats. Journal of Nutrition and Food Security, 6(1), 65–73. https://doi.org/10.18502/jnfs.v6i1.5301
  26. Prabhune, A., Sharma, M., Ojha, B., & Prabhune, C. A. (2017). Abelmoschus esculentus (Okra) potential natural compound for prevention and management of Diabetes and diabetic induced hyperglycemia. Tamil Nadu. International Journal of Herbal Medicine, 5(2), 66–68.
  27. Rahmani, A. H., Alsahli, M. A., Aly, S. M., Khan, M. A., & Aldebasi, Y. H. (2018). Role of Curcumin in Disease Prevention and Treatment. Advanced Biomedical Research, 7(38), 1–9. https://doi.org/10.4103/abr.abr_147_16
  28. Reckzeh, E. S., & Waldmann, H. (2020). Small-Molecule Inhibition of Glucose Transporters GLUT-1–4. ChemBioChem, 21(1–2), 45–52. https://doi.org/10.1002/cbic.201900544
  29. Setiawan, P. Y. B., Kertia, N., Nurrochmad, A., & Wahyuono, S. (2021). Curcumin in combination: Review of synergistic effects and mechanisms in the treatment of inflammation. Journal of Applied Pharmaceutical Science, 11(2), 001–011. https://doi.org/10.7324/JAPS.2021.110201
  30. Shao, W., Yu, Z., Chiang, Y., Yang, Y., Chai, T., Foltz, W., … Jin, T. (2012). Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE, 7(1), 1–14. https://doi.org/10.1371/journal.pone.0028784
  31. Soewondo, P., Ferrario, A., & Tahapary, D. L. (2013). Challenges in diabetes management in Indonesia: A literature review. Globalization and Health, 9(1), 1–17. https://doi.org/10.1186/1744-8603-9-63
  32. Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021
  33. Tyagita, N., Mahati, E., & Safitri, A. H. (2021). Superiority of Purple Okra (Abelmoschus esculentus) to Green Okra in Insulin Resistance and Pancreatic β Cell Improvement in Diabetic Rats. Folia Medica, 63(1), 51–58. https://doi.org/10.3897/folmed.63.e51944
  34. Uadia, P. O., Imagbovomwan, I. O., Oriakhi, K., & Eze, I. G. (2020). Effect of Abelmoschus esculentus (okra)-based diet on streptozotocin-induced diabetes mellitus in adult Wistar rats. Tropical Journal of Pharmaceutical Research, 19(8), 1737–1743. https://doi.org/10.4314/tjpr.v19i8.24
  35. Wu, D. T., Nie, X. R., Shen, D. D., Li, H. Y., Zhao, L., Zhang, Q., … Qin, W. (2020). Phenolic compounds, antioxidant activities, and inhibitory effects on digestive enzymes of different cultivars of okra (Abelmoschus esculentus). Molecules, 25(6), 1–11. https://doi.org/10.3390/molecules25061276
  36. Xia, Z. hong, Zhang, S. ya, Chen, Y. si, Li, K., Chen, W. bo, & Liu, Y. qiang. (2020). Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food and Chemical Toxicology, 146(October), 1–12. https://doi.org/10.1016/j.fct.2020.111803
  37. Yang, Q., Song, Z., Dong, B., Niu, L., Cao, H., Li, H., … Fu, Y. (2021). Hyperoside regulates its own biosynthesis via MYB30 in promoting reproductive development and seed set in okra. Plant Physiology, 185(3), 951–968. https://doi.org/10.1093/PLPHYS/KIAA068
  38. Yaribeygi, H., Sathyapalan, T., Atkin, S. L., & Sahebkar, A. (2020). Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/8609213

Open Access Copyright (c) 2024 Siti Nurjana Kurniaty Tanaiyo, Budiyanti Wiboworini, Setyo Sri Rahardjo
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here