Supp. File(s): common.other
Antioxidant activities (DPPH and ABTS method) from extract of Bangle rhizome (Zingiber cassumunar) using different method of extraction
Antioxidants are important for the prevention of oxidative stress, which can cause various degenerative diseases. Bangles contain bioactive components with antioxidant potential. Processing affects the active compounds in food, including angle. This study aimed to determine the effects of the blanching and extraction methods on the antioxidant activity of Bangle. This study focused on three factors: blanching treatment extraction technique, time, and type of extraction solvent. Analyses of antioxidants using the DPPH and ABTS methods were conducted in triplicate for each sample. Data were analyzed using ANOVA. The results of this study show that the method, time, and type of solvent significantly affect the antioxidant activity of bangle rhizome extracts. The best treatment for antioxidant activity of Bangle rhizome was blanching treatment by adding 0,05% citric acid solution in the sonication extraction method for 30 min with ethanol as the solvent. The IC50 value on the DPPH method was 20,61±0,76 mg/g, and the percent free radical scavenging value was 87,11±3,04%. The IC50 value on the ABTS method is 20,79±0,29 mg/g and a percent free radical scavenging activity value of 92,75±0,13%. This study provides key insights for choosing effective extraction methods to increase antioxidant activity in natural materials, such as Bangle rhizomes.
Supplement Files
Keywords : Antioxidant, Bangle Rhizome, Blanching, Extraction Method
- Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553. https://doi.org/10.1016/j.jsps.2015.03.013
- Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/molecules27041326
- Gašparović, A. Č. (2020). Free radical research in cancer. Antioxidants, 9(2), 10–13. https://doi.org/10.3390/antiox9020157
- González-Palma, I., Escalona-Buendía, H. B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V. K., Díaz-Godínez, G., & Soriano-Santos, J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology, 7(JUL), 1–9. https://doi.org/10.3389/fmicb.2016.01099
- Han, A. R., Kim, H., Piao, D., Jung, C. H., & Seo, E. K. (2021). Phytochemicals and bioactivities of zingiber cassumunar roxb. In Molecules (Vol. 26, Issue 8). MDPI AG. https://doi.org/10.3390/molecules26082377
- Hidayati, M. D., Ersam, T., Shimizu, K., & Fatmawati, S. (2017). Antioxidant activity of Syzygium polynthum extracts. Indonesian Journal of Chemistry, 17(1), 49–53. https://doi.org/10.22146/ijc.23545
- Magangana, T. P., Makunga, N. P., la Grange, C., Stander, M. A., Fawole, O. A., & Opara, U. L. (2021). Blanching pre-treatment promotes high yields, bioactive compounds, antioxidants, enzyme inactivation and antibacterial activity of ‘wonderful’ pomegranate peel extracts at three different harvest maturities. Antioxidants, 10(7). https://doi.org/10.3390/antiox10071119
- Martínez, S., Pérez, N., Carballo, J., & Franco, I. (2013). Effect of blanching methods and frozen storage on some quality parameters of turnip greens (“ grelos”). Lwt, 51(1), 383–392. https://doi.org/10.1016/j.lwt.2012.09.020
- Momchev, P., Ciganović, P., Jug, M., Marguí, E., Jablan, J., & Končić, M. Z. (2020). Comparison of maceration and ultrasonication for green extraction of phenolic acids from Echinacea purpurea aerial parts. Molecules, 25(21). https://doi.org/10.3390/molecules25215142
- Oroian, M., Dranca, F., & Ursachi, F. (2020). Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology, 57(1), 70–78. https://doi.org/10.1007/s13197-019-04031-x
- Percário, S., Da Silva Barbosa, A., Varela, E. L. P., Gomes, A. R. Q., Ferreira, M. E. S., De Nazaré Araújo Moreira, T., & Dolabela, M. F. (2020). Oxidative stress in parkinson’s disease: potential benefits of antioxidant supplementation. In Oxidative Medicine and Cellular Longevity (Vol. 2020). Hindawi Limited. https://doi.org/10.1155/2020/2360872
- Pujimulyani, D., Raharjo, S., Marsono, Y., & Santoso, U. (2010). Pengaruh blanching terhadap aktivitas antioksidan, kadar fenol, flavonoid, dan tanin terkondensasi kunir putih. AGRITECH, Vol. 30, No. 3, Agustus 2010, 30(3), 141–147.
- Pujimulyani, D., Windrayahya, S., & Irnawati, I. (2022). The effects of media and blanching time on the antioxidative properties of Curcuma aeruginosa Roxb. Indonesian Journal of Pharmacy, 32(2), 244–250.
- Rahmadi, A., Setionugroho, I. B., Yuliani, & Rohmah, M. (2017). Dragon fruit juice addition in palm oil-pumkin emulsion: panelist acceptance and antioxidant capacity. Jurnal Teknologi Dan Industri Pangan, 28(2), 122–128.
- Sami, F. J., & Rahimah, S. (2015). Antioxidant activity test of broccoli flower methanol extract (Brassica oleracea L. var. Italica) by method (2, 2 azinobis (3-ethylbenzothiazoline)-6-sulphonic acid). Jurnal Fitofarmaka Indonesia, 2(2), 107–110.
- Sari, N., Nurkhasanah, & Sulistyani, N. (2020). The antioxidant effect of bangle (Zingiber cassumunar) rhizome extract on superoxide dismutase (sod) activity in hyperlipidemic rats. Research Journal of Chemistry and Environment, 24(1), 78–81.
- Sayuti, M. (2017). Pengaruh perbedaan metode ekstraksi, bagian dan jenis pelarut terhadap rendemen dan aktivitas antioksidan Bambu Laut (Isis hippuris). Technology Science and Engineering Journal, 1(3), 2549–1601. https://politeknikaup.ac.id/assets/dokumen/publikasi/ilmiah/20211021102302.pdf
- Shi, H., Noguchi, N., & Niki, E. (1999). Comparative study on dynamics of antioxidative action of α-tocopheryl hydroquinone, ubiquinol, and α-tocopherol against lipid peroxidation Author links open overlay panel. Free Radical Biology and Medicine, 27(3–4), 334–346.
- Sopee, M. S. M., Azlan, A., & Khoo, H. E. (2019). Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water. Journal of Food Measurement and Characterization, 13(3), 1958–1963. https://doi.org/10.1007/s11694-019-00114-7
- Suryanto, E., & Taroreh, M. R. I. (2020). Ultrasound-assisted extraction antioksidan serat pangan dari tongkol jagung (Zea mays L.). Chemistry Progress, 12(2). https://doi.org/10.35799/cp.12.2.2019.27932
- Viña, J., Borras, C., Abdelaziz, K. M., Garcia-Valles, R., & Gomez-Cabrera, M. C. (2013). The free radical theory of aging revisited: The cell signaling disruption theory of aging. Antioxidants and Redox Signaling, 19(8), 779–787. https://doi.org/10.1089/ars.2012.5111
- Wakeel, A., Jan, S. A., Ullah, I., Shinwari, Z. K., & Xu, M. (2019). Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ, 2019(10). https://doi.org/10.7717/peerj.7857
- Xiao, H. W., Pan, Z., Deng, L. Z., El-Mashad, H. M., Yang, X. H., Mujumdar, A. S., Gao, Z. J., & Zhang, Q. (2017). Recent developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture, 4(2), 101–127. https://doi.org/10.1016/j.inpa.2017.02.001
- Zulaikhah, S. T. (2017). The role of antioxidant to prevent free radicals in the body. In Sains Medika : Jurnal Kedokteran dan Kesehatan (Vol. 8, Issue 1, p. 39). https://doi.org/10.30659/sainsmed.v8i1.1012
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.