Supp. File(s): Covering Letters
Study of the response to the glycemic index of rice starch (Oryza sativa L) modified by physical and enzymatic treatment
Excessive rice consumption with a high glycemic index has a negative effect on health. This study aimed to determine the effects of physical and enzymatic modifications of rice starch on estimated glycemic index (eIG). This study was conducted between June and November 2023. This experimental study used a completely randomized design (CRD) with four treatments: heat moisture treatment (HMT)-microwave, HMT-autoclave, and enzymatic pullulanase (20 units/g rice starch). The observed parameters included the eIG, amylose content, solubility, swelling power, and thermal characteristics. The eIG values were measured using the in vitro method with four replicates for each treatment. The research data are expressed as the average value ± standard deviation and were analyzed using descriptive methods. The results showed that the HMT-microwave, HMT-autoclave, and enzymatic pullulanase treatments reduced the eIG value of rice starch by 3,06%, 7,19%, and 9,06%, respectively. Thermal analysis using DSC showed that modified starch experienced an increase in the onset temperature (To), peak temperature (Tp), and end-set temperature (Te) compared to normal rice flour. In conclusion, the physical modification of HMT and enzymatic activity can reduce the eIG value of rice starch. This study provides an alternative for the development of functional rice starch-based products with a low glycemic index.
Supplement Files
Keywords : eIG, HMT, modification, rice starch, pullulanase
- Adawiyah, D. R., Akuzawa, S., Sasaki, T., & Kohyama, K. (2017). A comparison of the effects of heat moisture treatment (HMT) on rheological properties and amylopectin structure in sago (Metroxylon sago) and arenga (Arenga pinnata) starches. Journal of Food Science and Technology, 54(11), 3404–3410. https://doi.org/10.1007/s13197-017-2787-1
- AOAC. (2005). Association of Official Analytical Chemists (AOAC). In Van Nostrand’s Encyclopedia of Chemistry. Wiley. https://doi.org/10.1002/0471740039.vec0284
- Chen, Y., Yang, Q., Xu, X., Qi, L., Dong, Z., Luo, Z., Lu, X., & Peng, X. (2017). Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers, 177, 232–240. https://doi.org/10.1016/j.carbpol.2017.08.121
- Dodi, R., Di Pede, G., Scarpa, C., Deon, V., Dall’Asta, M., & Scazzina, F. (2023). Effect of the Pasta Making Process on Slowly Digestible Starch Content. Foods, 12(10). https://doi.org/10.3390/foods12102064
- dos Santos Costa, S., de Medeiros Almeida, M. C. B., Almeida, E. L., & Cavalcanti, M. T. (2019). Effects of Low Heat-Moisture Treatment in Prata Green Banana Starch (Musa AAB-Prata). Food and Bioprocess Technology, 12(11), 1938–1944. https://doi.org/10.1007/s11947-019-02352-5
- Dupuis, J. H., Liu, Q., & Yada, R. Y. (2014). Methodologies for Increasing the Resistant Starch Content of Food Starches: A Review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1219–1234. https://doi.org/10.1111/1541-4337.12104
- Fonseca, L. M., Halal, S. L. M. El, Dias, A. R. G., & Zavareze, E. da R. (2021). Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. In Carbohydrate Polymers (Vol. 274). Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2021.118665
- Ge, X., Shen, H., Su, C., Zhang, B., Zhang, Q., Jiang, H., Yuan, L., Yu, X., & Li, W. (2021). Pullulanase modification of granular sweet potato starch: Assistant effect of dielectric barrier discharge plasma on multi-scale structure, physicochemical properties. Carbohydrate Polymers, 272. https://doi.org/10.1016/j.carbpol.2021.118481
- Geng, D.-H., Zhang, X., Zhu, C., Wang, C., Cheng, Y., & Tang, N. (2023). Structural, physicochemical and digestive properties of rice starch modified by preheating and pullulanase treatments. Carbohydrate Polymers, 313, 120866. https://doi.org/10.1016/j.carbpol.2023.120866
- Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437. https://doi.org/10.1016/S0271-5317(97)00010-9
- Han, L., Cao, S., Yu, Y., Xu, X., Cao, X., & Chen, W. (2021). Modification in physicochemical, structural and digestive properties of pea starch during heat-moisture process assisted by pre- and post-treatment of ultrasound. Food Chemistry, 360. https://doi.org/10.1016/j.foodchem.2021.129929
- Hutabarat, D. J. C., & Stevensen, J. (2023). Physicochemical Properties of Enzymatically Modified Starch: A Review. IOP Conference Series: Earth and Environmental Science, 1169(1). https://doi.org/10.1088/1755-1315/1169/1/012093
- International Diabetes Federation. (2019). 463 PEOPLE LIVING WITH DIABETES million.
- Kaur, B., Ranawana, V., & Henry, J. (2016). The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. In Critical Reviews in Food Science and Nutrition (Vol. 56, Issue 2, pp. 215–236). Taylor and Francis Inc. https://doi.org/10.1080/10408398.2012.717976
- Khoiriyah, D., Murbawani, E. A., & Panunggal, B. (2017). DIETARY CARBOHYDRATE AND PHYSICAL ACTIVITY WITH PREDIABETES WITHIN ADULT WOMEN ASUPAN KARBOHIDRAT DAN AKTIVITAS FISIK DENGAN PREDIABETES PADA WANITA DEWASA. 8, 59–65. http://jurnal.untad.ac.id/jurnal/index.php/Preventif
- Kim, H. Y., & Baik, M. Y. (2022). Pressure moisture treatment and hydro-thermal treatment of starch. In Food Science and Biotechnology (Vol. 31, Issue 3, pp. 261–274). The Korean Society of Food Science and Technology. https://doi.org/10.1007/s10068-021-01016-5
- Kumar, A., Sahoo, U., Lal, M. K., Tiwari, R. K., Lenka, S. K., Singh, N. R., Gupta, O. P., Sah, R. P., & Sharma, S. (2022). Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. Journal of Cereal Science, 106, 103501. https://doi.org/10.1016/J.JCS.2022.103501
- Kunyanee, K., & Luangsakul, N. (2022a). The impact of heat moisture treatment on the physicochemical properties and in vitro glycemic index of rice flour with different amylose contents and associated effects on rice dumpling quality. LWT, 154. https://doi.org/10.1016/j.lwt.2021.112694
- Kunyanee, K., & Luangsakul, N. (2022b). The impact of heat moisture treatment on the physicochemical properties and in vitro glycemic index of rice flour with different amylose contents and associated effects on rice dumpling quality. LWT, 154. https://doi.org/10.1016/j.lwt.2021.112694
- Lal, M. K., Singh, B., Sharma, S., Singh, M. P., & Kumar, A. (2021). Glycemic index of starchy crops and factors affecting its digestibility: A review. In Trends in Food Science and Technology (Vol. 111, pp. 741–755). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.02.067
- Li, H., Li, J., Xiao, Y., Cui, B., Fang, Y., & Guo, L. (2019). In vitro digestibility of rice starch granules modified by β-amylase, transglucosidase and pullulanase. International Journal of Biological Macromolecules, 136, 1228–1236. https://doi.org/10.1016/j.ijbiomac.2019.06.111
- Liu, H., Guo, X., Li, W., Wang, X., Lv, M., Peng, Q., & Wang, M. (2015). Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydrate Polymers, 132, 237–244. https://doi.org/10.1016/j.carbpol.2015.06.071
- Liu, P., Fang, Y., Zhang, X., Zou, F., Gao, W., Zhao, H., Yuan, C., & Cui, B. (2020). Effects of multienzyme treatment on the physicochemical properties of maize starch-lauric acid complex. Food Hydrocolloids, 107. https://doi.org/10.1016/j.foodhyd.2020.105941
- Mayawati, H., Nur Isnaeni, F., & Studi Ilmu Gizi Fakultas Ilmu Kesehatan Universitas Muhammadiyah Surakarta Jl Yani, P. A. (2017). HUBUNGAN ASUPAN MAKANAN INDEKS GLIKEMIK TINGGI DAN AKTIVITAS FISIK DENGAN KADAR GLUKOSA DARAH PADA PASIEN DIABETES MELLITUS TIPE II RAWAT JALAN DI RSUD KARANGANYAR (Vol. 10, Issue 1).
- Ngo, T. Van, Kunyanee, K., & Luangsakul, N. (2023). Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. In Foods (Vol. 12, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods12193659
- Park, S., & Kim, Y. R. (2021). Clean label starch: production, physicochemical characteristics, and industrial applications. In Food Science and Biotechnology (Vol. 30, Issue 1). The Korean Society of Food Science and Technology. https://doi.org/10.1007/s10068-020-00834-3
- Piecyk, M., & Domian, K. (2021). Effects of heat–moisture treatment conditions on the physicochemical properties and digestibility of field bean starch (Vicia faba var. minor). International Journal of Biological Macromolecules, 182, 425–433. https://doi.org/10.1016/j.ijbiomac.2021.04.015
- Pranoto, Y., & Kumar Rakshit, S. (2014). Physicochemical properties of heat moisture treated sweet potato starches of selected Indonesian varieties. In Article in International Food Research Journal (Vol. 21, Issue 5).
- Rodríguez-Torres, D., Murillo-Arango, W., Vaquiro-Herrera, H. A., & Solanilla-Duque, J. F. (2017). Propiedades térmicas y fisicoquímicas de almidones de tres variedades de arroz colombianas. Agronomia Colombiana, 35(1), 116–124. https://doi.org/10.15446/agron.colomb.v35n1.58682
- Sandhu, K. S., Siroha, A. K., Punia, S., & Nehra, M. (2020). Effect of heat moisture treatment on rheological and in vitro digestibility properties of pearl millet starches. Carbohydrate Polymer Technologies and Applications, 1. https://doi.org/10.1016/j.carpta.2020.100002
- Sari, A. R., Martono, Y., & Rondonuwu, F. S. (2020). Identifikasi Kualitas Beras Putih (Oryza sativa L.) Berdasarkan Kandungan Amilosa dan Amilopektin di Pasar Tradisional dan “Selepan” Kota Salatiga. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 12(1), 24–30. https://doi.org/10.30599/jti.v12i1.599
- Surendra Babu, A., & Parimalavalli, R. (2018). Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch. Journal of the Saudi Society of Agricultural Sciences, 17(2), 208–216. https://doi.org/10.1016/j.jssas.2016.04.005
- Wang, H., Xiao, N., Wang, X., Zhao, X., & Zhang, H. (2019). Effect of pregelatinized starch on the characteristics, microstructures, and quality attributes of glutinous rice flour and dumplings. Food Chemistry, 283, 248–256. https://doi.org/10.1016/j.foodchem.2019.01.047
- Xing, J. jie, Li, D., Wang, L. jun, & Adhikari, B. (2018). Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch. Journal of Food Engineering, 217, 43–49. https://doi.org/10.1016/j.jfoodeng.2017.08.019
- Zhang, H., Wang, R., Chen, Z., & Zhong, Q. (2019). Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocolloids, 95, 195–202. https://doi.org/10.1016/j.foodhyd.2019.04.036
- Zheng, M., You, Q., Lin, Y., Lan, F., Luo, M., Zeng, H., Zheng, B., & Zhang, Y. (2019). Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. Food Chemistry, 272, 286–291. https://doi.org/10.1016/j.foodchem.2018.08.029
- Zheng, M. zhu, Xiao, Y., Yang, S., Liu, H. min, Liu, M. hong, Yaqoob, S., Xu, X. ying, & Liu, J. sheng. (2020). Effects of heat–moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Science and Nutrition, 8(2), 735–743. https://doi.org/10.1002/fsn3.1295
Copyright (c) 2024 Lailatul Azkiyah, Yuli Witono, Noven Kristina Br. Silalahi, Ardiyan Dwi Masahid, Fifteen Aprilia Fajrin, Hadi Paramu, Didik Pudji Restanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.