Preventive effect of mulberry (Morus alba) leaf tea on low-density lipoprotein and malondialdehyde levels in dyslipidemic sprague-dawley rats

Tia Rahmania Virdias* -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang., Indonesia
Mohammad Sulchan -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang., Indonesia
Ahmad Ni’matullah Al-baarri -  Department of Food Technology, Faculty of Animal and Agricultural, Diponegoro University, Semarang,., Indonesia

Supp. File(s): common.other common.other common.other common.other

A high-fat diet can lead to dyslipidemia, which is characterized by elevated levels of Low-Density Lipoprotein (LDL).  LDL is rapidly oxidized, resulting in oxidative stress. This increase in oxidative stress can lead to lipid peroxidation, ultimately producing Malondialdehyde (MDA). One way to prevent increased LDL and MDA levels is to consume mulberry leaf tea (MLT). This study aimed to analyze the effects of MLT administration on LDL and MDA levels in dyslipidemic Sprague-Dawley rats fed a high-fat diet (HFD). This study was conducted in 2021 at the Laboratory of the Center for Food and Nutrition Studies at Gadjah Mada University, Yogyakarta. True experimental research with a randomized pre- and post-test control-group design was used in this study. Thirty male Sprague-Dawley rats were used in this study. After 21 days of intervention, LDL and MDA levels were analyzed using CHOD-PAP and ELISA, respectively. One-way ANOVA and Kruskal-Wallis tests were used for statistical analyses. The administration of 36 mg and 72 mg of MLT for 21 days was able to have a significant effect on reducing LDL (p= 0,000) and MDA (p= 0,000) levels. In conclusion, mulberry leaf tea decreased the LDL and MDA levels in Sprague-Dawley rats fed a high-fat diet.

Supplement Files

Keywords : Cardiovascular disease, lipid profile, mulberry leaf, oxidative stress

  1. Adnan, M. L., Pramaningtyas, M. D., Islamiana, D., & Sudarto, H. A. (2022). Hyperlipidemia Diet Reduces Superoxide Dismutase Inhibition Rate in the Brain Organ of Rattus norvegicus. Mutiara Medika: Jurnal Kedokteran Dan Kesehatan, 22(1), 14–19. https://doi.org/10.18196/mmjkk.v22i1.8167
  2. Alfarisi, H. A. H., Mohamed, Z. B. H., & Ibrahim, M. Bin. (2020). Basic pathogenic mechanisms of atherosclerosis. Egyptian Journal of Basic and Applied Sciences, 7(1), 116–125. https://doi.org/10.1080/2314808X.2020.1769913
  3. Ann, J. Y., Eo, H., & Lim, Y. (2015). Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes and Nutrition, 10(6), 1–13. https://doi.org/10.1007/s12263-015-0495-x
  4. Atta, E. M., Mohamed, N. H., & Abdelgawad, A. A. M. (2017). Antioxidants: An overview on the natural and synthetic types. European Chemical Bulletin, 6(8), 365. https://doi.org/10.17628/ecb.2017.6.365-375
  5. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 31. https://doi.org/10.1155/2014/360438
  6. Azemi, N. A., Azemi, A. K., Abu-Bakar, L., Sevakumaran, V., Muhammad, T. S. T., & Ismail, N. (2023). Effect of Linoleic Acid on Cholesterol Levels in a High-Fat Diet-Induced Hypercholesterolemia Rat Model. Metabolites, 13(1). https://doi.org/10.3390/metabo13010053
  7. Ben-Aicha, S., Badimon, L., & Vilahur, G. (2020). Advances in HDL: Much more than lipid transporters. International Journal of Molecular Sciences, 21(3). https://doi.org/10.3390/ijms21030732
  8. Chang, Y. C., Yang, M. Y., Chen, S. C., & Wang, C. J. (2016). Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. Journal of Functional Foods, 21, 249–262. https://doi.org/10.1016/j.jff.2015.11.033
  9. Du, Z., & Qin, Y. (2023). Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and New Opportunities for Management Strategies. Journal of Clinical Medicine, 12(1), 12–15. https://doi.org/10.3390/jcm12010363
  10. Duan, Y., Gong, K., Xu, S., Zhang, F., Meng, X., & Han, J. (2022). Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01125-5
  11. Fauza, A., Al-Baarri, A. N., & Djamiatun, K. (2019). Potency of okra flour (Abelmoschus esculentus) in improving adiponectin level and total antioxidant capacity of high fat diet Streptozotocin rat model. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 644–650. https://doi.org/10.5219/1136
  12. Feng, Y., Gao, S., Zhu, T., Sun, G., Zhang, P., Huang, Y., Qu, S., Du, X., & Mou, D. (2022). Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Frontiers in Nutrition, 9(August), 1–12. https://doi.org/10.3389/fnut.2022.936229
  13. Gu, L., Gong, Y., Zhao, C., Wang, Y., Tian, Q., Lei, G., Liang, Y., Zhao, W., & Tan, S. (2019). Lunasin improves the LDL-C lowering efficacy of simvastatin via inhibiting PCSK9 expression in hepatocytes and ApoE−/− mice. Molecules, 24(22)(4140), 1–13. https://doi.org/doi:10.3390/molecules24224140
  14. Guo, S., Gu, D., Liu, C., Tang, S., Wang, Y., & Yang, Y. (2023). High-speed counter-current chromatographic separation and thermodynamic mechanism of an antioxidant from Morus alba leaves. Biochemical Systematics and Ecology, 107(February), 104617. https://doi.org/10.1016/j.bse.2023.104617
  15. Harumi P, M., Trisna, G., Odiyana P G, N., Aulia R, D., Khrisnawati, P., & Farmawati, A. (2015). Quercetin And Curcumin Prevent Decreasing Of LDL-Cholesterol And Increasing Of HDL-Cholesterol In High Fat Diet Rats. Media Farmasi: Jurnal Ilmu Farmasi, 12(2), 225. https://doi.org/10.12928/mf.v12i2.3788
  16. Hasim, Lestari, W. A., Sugiman, U., & Faridah, D. N. (2020). In vitro α-Glucosidase inhibition and antioxidant activity of mulberry (Morus Alba L.) leaf ethanolic extract. Jurnal Gizi Dan Pangan, 15(28), 45–52. https://doi.org/10.25182/jgp.2020.15.1.45-52
  17. Itabe, H. (2009). Oxidative modification of LDL: Its pathological role in atherosclerosis. Clinical Reviews in Allergy and Immunology, 37(1), 4–11. https://doi.org/10.1007/s12016-008-8095-9
  18. Ito, F., Sono, Y., & Ito, T. (2019). Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants, 8(3). https://doi.org/10.3390/antiox8030072
  19. Jia, Q., Cao, H., Shen, D., Li, S., Yan, L., Chen, C., Xing, S., & Dou, F. (2019). Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. International Journal of Molecular Medicine, 44(3), 893–902. https://doi.org/10.3892/ijmm.2019.4263
  20. Jurian, V. Y., Suwasono, S., & Fauzi, M. (2016). Antibakteri ekstrak daun murbei ( Morus alba ) terhadap Escherichia coli. Asosiasi Profesi Teknologi Industri, 256–260.
  21. Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R. V., & Saini, A. K. (2020). Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxidative Medicine and Cellular Longevity, 1–14. https://doi.org/10.1155/2020/5245308
  22. Kobayashi Y, Miyazawa M, & Araki M, Kamei A, Kabe K, Hiroi T, et al. (2015). Effects of Morus alba L. (mulberry) leaf extract in hypercholesterolemic mice on suppression of cholesterol synthesis. Journal of Pharmacognosy & Natural Products, 2(1). https://doi.org/10.4172/2472-0992.1000113
  23. Lee, E., Lee, M. S., Chang, E., Kim, C. T., Choi, A. J., Kim, I. H., & Kim, Y. (2021). High hydrostatic pressure extract of mulberry leaves ameliorates hypercholesterolemia via modulating hepatic microrna-33 expression and ampk activity in high cholesterol diet fed rats. Food and Nutrition Research, 65, 1–10. https://doi.org/10.29219/fnr.v65.7587
  24. Leibowitz, M., Cohen-Stavi, C., Basu, S., & Balicer, R. D. (2017). Targeting LDL Cholesterol: Beyond absolute goals toward personalized risk. Current Cardiology Reports, 19(6). https://doi.org/10.1007/s11886-017-0858-6
  25. Levitan, I., Volkov, S., & Subbaiah, P. V. (2010). Comprehensive invited review oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling, 13(1), 39–75. https://doi.org/10.1089=ars.2009.2733
  26. Meng, D. F., Guo, L. L., Peng, L. X., Zheng, L. S., Xie, P., Mei, Y., Li, C. Z., Peng, X. S., Lang, Y. H., Liu, Z. J., Wang, M. D., Xie, D. H., Shu, D. T., Hu, H., Lin, S. T., Li, H. F., Luo, F. F., Sun, R., Huang, B. J., & Qian, C. N. (2020). Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochemical and Biophysical Research Communications, 527(3), 770–777. https://doi.org/10.1016/j.bbrc.2020.04.093
  27. Morieri, M. L., Avogaro, A., & Fadini, G. P. (2020). Cholesterol lowering therapies and achievement of targets for primary and secondary cardiovascular prevention in type 2 diabetes: unmet needs in a large population of outpatients at specialist clinics. Cardiovascular Diabetology, 19(1), 1–14. https://doi.org/10.1186/s12933-020-01164-8
  28. Muntafiah, A., Siahaan, J. H., Hardi, S., Novrial, D., & Hernayanti, H. (2022). The effect of purple passion fruit juice on superoxide dismutase and malondialdehyde levels in hypercholesterolemic rats. Universa Medicina, 41(2), 139–148. https://doi.org/10.18051/univmed.2022.v41.139-148
  29. Nodeland, M., Klevjer, M., Sæther, J., Giskeødegård, G., Bathen, T. F., Wisløff, U., & Bye, A. (2022). Atherogenic lipidomics profile in healthy individuals with low cardiorespiratory fitness: The HUNT3 fitness study. Atherosclerosis, 343(August 2021), 51–57. https://doi.org/10.1016/j.atherosclerosis.2022.01.001
  30. Papac-Milicevic, N., Busch, C. J. L., & Binder, C. J. (2016). Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Advances in Immunology, 131, 1–59. https://doi.org/10.1016/bs.ai.2016.02.001
  31. Poswal, F. S., Russell, G., Mackonochie, M., MacLennan, E., Adukwu, E. C., & Rolfe, V. (2019). Herbal teas and their health benefits: A scoping review. Plant Foods for Human Nutrition, 74(3), 266–276. https://doi.org/10.1007/s11130-019-00750-w
  32. Poznyak, A. V., Nikiforov, N. G., Markin, A. M., Kashirskikh, D. A., Myasoedova, V. A., Gerasimova, E. V., & Orekhov, A. N. (2021). Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Frontiers in Pharmacology, 11(January), 1–11. https://doi.org/10.3389/fphar.2020.613780
  33. Rohela, G. K., Shukla, P., Kumar, R., & Chowdhury, S. R. (2020). Mulberry ( Morus spp .): An ideal plant for sustainable development. Trees, Forests and People, 2. https://doi.org/10.1016/j.tfp.2020.100011
  34. Sangle, G. V., & Shen, G. X. (2010). Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. Clinical Lipidology, 5(2), 221–232. https://doi.org/10.2217/clp.10.6
  35. Sari, W. (2019). Ethanolic extracts of mulberry (Morus alba Linn) leaf prevent hyperlipidemia and oxidative stress-induced steatohepatitis in rats. International Summit on Science Technology and Humanity, 610–617.
  36. Schluter, K. D., Wolf, A., Weber, M., Schreckenberg, R., & Schulz, R. (2017). Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Research in Cardiology, 112(6), 1–11. https://doi.org/10.1007/s00395-017-0650-1
  37. Simsek, B., & Çakatay, U. (2019). Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles? Medical Hypotheses, 126(January), 20–22. https://doi.org/10.1016/j.mehy.2019.03.004
  38. Taghizadeh, M., Mohammad Zadeh, A., Asemi, Z., Farrokhnezhad, A. H., Memarzadeh, M. R., Banikazemi, Z., Shariat, M., & Shafabakhsh, R. (2022). Morus Alba leaf extract affects metabolic profiles, biomarkers inflammation and oxidative stress in patients with type 2 diabetes mellitus: A double-blind clinical trial. Clinical Nutrition ESPEN, 49, 68–73. https://doi.org/10.1016/j.clnesp.2022.03.027
  39. Thabti, I., Elfalleh, W., Tlili, N., Ziadi, M., Campos, M. G., & Ferchichi, A. (2014). Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of morus species. International Journal of Food Properties, 17(4), 842–854. https://doi.org/10.1080/10942912.2012.660722
  40. Thongtang, N., Sukmawan, R., Llanes, E. J. B., & Lee, Z. V. (2022). Dyslipidemia management for primary prevention of cardiovascular events: Best in-clinic practices. Preventive Medicine Reports, 27(December 2021), 101819. https://doi.org/10.1016/j.pmedr.2022.101819
  41. Tsuduki, T., Kikuchi, I., Kimura, T., Nakagawa, K., & Miyazawa, T. (2013). Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chemistry, 139(1–4), 16–23. https://doi.org/10.1016/j.foodchem.2013.02.025
  42. Vekic, J., Zeljkovic, A., Cicero, A. F. G., Janez, A., Stoian, A. P., Sonmez, A., & Rizzo, M. (2022). Atherosclerosis development andpProgression: The role of atherogenic small, dense LDL. Medicina (Lithuania), 58(2), 1–12. https://doi.org/10.3390/medicina58020299
  43. Wahjuni, S. (2014). Anti-hyperchloesterolmia of Anredera cordifolia in hypercholesterolemic Wistar rats through malondialdehyde and 8-hydroxy-diguanosine. Indonesia Journal of Biomedical Science, 8(1), 4. https://doi.org/10.15562/ijbs.v8i1.7
  44. Wang, M., Sun, J., Jiang, Z., Xie, W., & Zhang, X. (2015). Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. American Journal of Chinese Medicine, 43(2), 241–254. https://doi.org/10.1142/S0192415X15500160
  45. Welty, F. K., Lewis, S. J., Friday, K. E., Cain, V. A., & Anzalone, D. A. (2016). A comparison of statin therapies in hypercholesterolemia in women: A subgroup analysis of the STELLAR study. Journal of Women’s Health, 25(1), 50–56. https://doi.org/10.1089/jwh.2015.5271
  46. Wilson, R. D., & Islam, M. D. S. (2015). Effects of white mulberry (Morus alba) leaf tea investigated in a type 2 diabetes model of rats. Acta Poloniae Pharmaceutica - Drug Research, 72(1), 153–160.
  47. Wong, T. Y., Tan, Y. Q., Lin, S. mei, & Leung, L. K. (2017). Apigenin and luteolin display differential hypocholesterolemic mechanisms in mice fed a high-fat diet. Biomedicine and Pharmacotherapy, 96(November), 1000–1007. https://doi.org/10.1016/j.biopha.2017.11.131
  48. World Health Organization. (2018). NCDs Country Profiles 2018 WHO. 224. https://www.who.int/nmh/publications/ncd-profiles-2018/en/
  49. Yang, X., Yang, L., & Zheng, H. (2010). Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food and Chemical Toxicology, 48(8–9), 2374–2379. https://doi.org/10.1016/j.fct.2010.05.074
  50. Yang, Z., Hao, D., Che, Y., Zhang, L., & Zhang, S. (2018). Structural basis and functional mechanism of lipoprotein in cholesterol transport. Cholesterol - Good, Bad and the Heart, 3–18. https://doi.org/10.5772/intechopen.76015
  51. Yu, Y., Li, H., Zhang, B., Wang, J., Shi, X., Huang, J., Yang, J., Zhang, Y., & Deng, Z. (2018). Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. International Journal of Food Properties, 21(1), 1495–1507. https://doi.org/10.1080/10942912.2018.1489833
  52. Zhang, K., Song, W., Li, D., & Jin, X. (2017). Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Experimental and Therapeutic Medicine, 13(5), 1719–1724. https://doi.org/10.3892/etm.2017.4165
  53. Zhang, M., Xie, Z., Gao, W., Pu, L., Wei, J., & Guo, C. (2016). Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutrition Research, 36(3), 271–279. https://doi.org/10.1016/j.nutres.2015.11.019
  54. Zhao, F., Chen, L., Jiang, Y., Guo, Y., Lu, L., Lu, C., Xue, X., Liu, X., Jin, X., Liu, J., & Chen, K. (2023). Red yeast rice preparations for dyslipidemia: An overview of systematic reviews and network meta-analysis. Journal of Functional Foods, 104(March), 105508. https://doi.org/10.1016/j.jff.2023.105508

Open Access Copyright (c) 2024 Tia Rahmania Virdias, Mohammad Sulchan, Ahmad Ni’matullah Al-baarri
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here