Antioxidant and nitric oxide inhibition activities of myristica fragrans essential oil in RAW 264.7 Cells

Aulia Rahmatun Nufus -  Magister of Biomedical Science, Faculty of Medicine, Banda Aceh, Universitas Syiah Kuala, Indonesia
Nirwana Lazuardi Sary -  Departement of Physiology, Faculty of Medicine, Banda Aceh, Universitas Syiah Kuala, Indonesia
Fauzul Husna* -  Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Indonesia

Supp. File(s): common.other Research Instrument
The excessive production of free radicals, such as Nitric Oxide (NO), initiates several diseases. Compounds of nutmeg oil (MFEO) have been reported to exhibit antioxidant activity. This study aimed to evaluate the antioxidant activity, cytotoxicity, and NO inhibitory potential of MFEO. This experimental study was conducted using the MFEO obtained from plantations in South Aceh Regency, Indonesia. The antioxidant activities were tested using the ABTS and FRAP tests, cytotoxicity test used micro-tetrazolium solution and NO production inhibition were carried out on RAW 264.7 cells used Griess Reagent. The IC50 values were determined using linear regression statistical analysis (p<0,05). Results, the IC50 values of MFEO using the ABTS method were 8,400 ppm and 24,949 ppm, respectively, using the FRAP method. These results indicate that MFEO has a very weak antioxidant activity compared to Trolox and ascorbic acid. An MFEO concentration of 250 ppm showed a cell viability of more than 50% (75,57%), and the ability to inhibit NO production began to be shown at an MFEO concentration of 50 ppm (7,5%). The antioxidant activities of MFEO were very weak and MFEO concentrations starting from 50 ppm inhibited NO production, and up to a concentration of 250 ppm, more than 50% viability of RAW 264.7 cell. In conclusion, MFEO needs higher concentrations than Trolox and ascorbic acid for strong antioxidant effects. At lower doses, it remains safe for RAW 264.7 cells and effectively reduces NO production.

Supplement Files

Keywords : Myristica fragrans, nitric oxide production, RAW 264.7 cells, cytotoxicity

  1. Abeyrathne, E. D. N. S., Nam, K., Huang, X., & Ahn, D. U. (2022). Plant-and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review. In Antioxidants (Vol. 11, Issue 5). MDPI. https://doi.org/10.3390/antiox11051025
  2. Almarfadi, O. M., Siddiqui, N. A., Shahat, A. A., Alqahtani, A. S., Alam, P., Nasr, F. A., Alshahrani, S. S., & Noman, O. M. (2022). Quantification of biomarkers and evaluation of antioxidant, anti-inflammatory, and cytotoxicity properties of Dodonaea viscosa grown in Saudi Arabia using HPTLC technique. Open Chemistry, 20(1), 559–569. https://doi.org/10.1515/chem-2022-0181
  3. Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Al-Hamoud, G. A., & Al-Yousef, H. M. (2021). Immunomodulatory and antioxidant potential of biogenic functionalized polymeric nutmeg oil/polyurethane/zno bionanocomposite. Pharmaceutics, 13(12). https://doi.org/10.3390/pharmaceutics13122197
  4. Angilia, C., Sary, N. L., Indah, R., Suryawati, S., Farsa, B. S., Zeir, H. A., Fajri, F., & Husna, F. (2024). Wound healing effect of nutmeg (Myristica fragrans) cream on second-degree burn in animal model. Narra J, 4(1). https://doi.org/10.52225/narra.v4i1.621
  5. Antasionasti, I., Datu, O. S., Lestari, U. S., Abdullah, S. S., & Jayanto, I. (2021). Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg white. Borneo Journal of Pharmacy, 4(4), 301–310. https://doi.org/10.33084/bjop.v4i4.2497
  6. Ashokkumar, K., Simal-Gandara, J., Murugan, M., Dhanya, M. K., & Pandian, A. (2022). Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. In Phytotherapy Research (Vol. 36, Issue 7, pp. 2839–2851). John Wiley and Sons Ltd. https://doi.org/10.1002/ptr.7491
  7. Assa, J. R., Widjanarko, S. B., Kusnadi, J., & Berhimpon, S. (2014). Antioxidant potential of flesh, seed and mace of nutmeg (Myristica fragrans Houtt). International Journal of ChemTech Research, 6(4), 2460–2468.
  8. Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803269-5.00002-4
  9. Cinelli, M. A., Do, H. T., Miley, G. P., & Silverman, R. B. (2020). Inducible nitric oxide synthase: Regulation, structure, and inhibition. In Medicinal Research Reviews (Vol. 40, Issue 1, pp. 158–189). John Wiley and Sons Inc. https://doi.org/10.1002/med.21599
  10. Di Meo, S., & Venditti, P. (2020). Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/9829176
  11. Do Nascimento, L. D., de Moraes, A. A. B., da Costa, K. S., Galúcio, J. M. P., Taube, P. S., Costa, C. M. L., Cruz, J. N., Andrade, E. H. de A., & de Faria, L. J. G. (2020). Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. In Biomolecules (Vol. 10, Issue 7, pp. 1–37). MDPI AG. https://doi.org/10.3390/biom10070988
  12. Dong, L., Yin, L., Zhang, Y., Fu, X., & Lu, J. (2017). Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells. Molecular Immunology, 83, 46–51. https://doi.org/10.1016/j.molimm.2017.01.007
  13. Dosoky, N. S., & Setzer, W. N. (2021). Maternal reproductive toxicity of some essential oils and their constituents. In International Journal of Molecular Sciences (Vol. 22, Issue 5, pp. 1–31). MDPI AG. https://doi.org/10.3390/ijms22052380
  14. Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2018). In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 6(4). https://doi.org/10.3390/biomedicines6040107
  15. Ibrahim, M. A., Cantrell, C. L., Jeliazkova, E. A., Astatkie, T., & Zheljazkov, V. D. (2020). Utilization of nutmeg (Myristica fragrans Houtt.) seed hydrodistillation time to produce essential oil fractions with varied compositions and pharmacological effects. Molecules, 25(3). https://doi.org/10.3390/molecules25030565
  16. Imran, M., Haleem Shah, A., Ullah, N., Yousef Alomar, S., Rehman, A., Ur Rehman, N., Nawaz, A., Baloch, R., Zaman, A., Abdul Rafey, H., Abbas, K., & Amin, A. (2024). Integrated computational analysis, in vitro, in vivo investigation on Myristica fragrans Houtt. essential oils for potential anti rheumatic activities. Journal of King Saud University - Science, 36(5). https://doi.org/10.1016/j.jksus.2024.103177
  17. Ivanović, M., Makoter, K., & Razboršek, M. I. (2021). Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic zingiberaceae herbs. Plants, 10(3), 1–20. https://doi.org/10.3390/plants10030501
  18. Jung, Y. J., Park, J. H., Cho, J. G., Seo, K. H., Lee, D. S., Kim, Y. C., Kang, H. C., Song, M. C., & Baek, N. I. (2015). Lignan and flavonoids from the stems of Zea mays and their anti-inflammatory and neuroprotective activities. Archives of Pharmacal Research, 38(2), 178–185. https://doi.org/10.1007/s12272-014-0387-4
  19. Kang, S. G., Lee, G. B., R, V., Do, G. S., Yong, O. S., & Yang, S. J. (2022). Anti-Inflammatory, Antioxidative, and Nitric Oxide-Scavenging Activities of a Quercetin Nanosuspension with Polyethylene Glycol in LPS-Induced RAW 264.7 Macrophages. Molecules, 27(7432).
  20. Khamnuan, S., Phrutivorapongkul, A., Pitchakarn, P., Buacheen, P., Karinchai, J., Chittasupho, C., Na Takuathung, M., Theansungnoen, T., Thongkhao, K., & Intharuksa, A. (2023). The Identification and Cytotoxic Evaluation of Nutmeg (Myristica fragrans Houtt.) and Its Substituents. Foods, 12(23). https://doi.org/10.3390/foods12234211
  21. Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the alamarblue assay. Cold Spring Harbor Protocols, 2018(6), 462–464. https://doi.org/10.1101/pdb.prot095489
  22. Lundberg, J. O., & Weitzberg, E. (2022). Nitric oxide signaling in health and disease. In Cell (Vol. 185, Issue 16, pp. 2853–2878). Elsevier B.V. https://doi.org/10.1016/j.cell.2022.06.010
  23. Matulyte, I., Jekabsone, A., Jankauskaite, L., Zavistanaviciute, P., Sakiene, V., Bartkiene, E., Ruzauskas, M., Kopustinskiene, D. M., Santini, A., & Bernatoniene, J. (2020). The essential oil and hydrolats from myristica fragrans seeds with magnesium aluminometasilicate as excipient: Antioxidant, antibacterial, and anti-inflammatory activity. Foods, 9(1). https://doi.org/10.3390/foods9010037
  24. Merly, L., & Smith, S. L. (2017). Murine RAW 264.7 cell line as an immune target: are we missing something? Immunopharmacology and Immunotoxicology, 39(2), 55–58. https://doi.org/10.1080/08923973.2017.1282511
  25. Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. In International Journal of Molecular Sciences (Vol. 22, Issue 7). MDPI AG. https://doi.org/10.3390/ijms22073380
  26. Nikolic, V., Nikolic, L., Dinic, A., Gajic, I., Urosevic, M., Stanojevic, L., Stanojevic, J., & Danilovic, B. (2021). Chemical Composition, Antioxidant and Antimicrobial Activity of Nutmeg (Myristica fragrans Houtt.) Seed Essential Oil. Journal of Essential Oil-Bearing Plants, 24(2), 218–227. https://doi.org/10.1080/0972060X.2021.1907230
  27. Piacenza, L., Zeida, A., Trujillo, M., & Radi, R. (2022). The Superoxide Radical Switch In The Biology Of Nitric Oxide And Peroxynitrite. In Physiological Reviews (Vol. 102, Issue 4, pp. 1881–1906). American Physiological Society. https://doi.org/10.1152/PHYSREV.00005.2022
  28. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Review Article Oxidative Stress : Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/8416763
  29. Rumpf, J., Burger, R., & Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules, 233. https://doi.org/10.1016/j.ijbiomac.2023.123470
  30. Sultan, M. T., Saeed, F., Raza, H., Ilyas, A., Sadiq, F., Musarrat, A., Afzaal, M., Hussain, M., Raza, M. A., & Al JBawi, E. (2023). Nutritional and therapeutic potential of nutmeg (Myristica fragrans): A concurrent review. In Cogent Food and Agriculture (Vol. 9, Issue 2). Informa Healthcare. https://doi.org/10.1080/23311932.2023.2279701
  31. Suthisamphat, N., Dechayont, B., Phuaklee, P., Prajuabjinda, O., Vilaichone, R. K., Itharat, A., Mokmued, K., & Prommee, N. (2020). Anti-Helicobacter pylori, Anti-Inflammatory, Cytotoxic, and Antioxidant Activities of Mace Extracts from Myristica fragrans. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/7576818
  32. Tang, J., Dunshea, F. R., & Suleria, H. A. R. (2020). LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (Hops and Juniper Berries) and their antioxidant activity. Foods, 9(1), 1–25. https://doi.org/10.3390/foods9010007
  33. Thangaleela, S., Sivamaruthi, B. S., Kesika, P., Bharathi, M., Kunaviktikul, W., Klunklin, A., Chanthapoon, C., & Chaiyasut, C. (2022). Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. In Applied Sciences (Switzerland) (Vol. 12, Issue 9). MDPI. https://doi.org/10.3390/app12094495
  34. Trifan, A., Zengin, G., Korona-Glowniak, I., Skalicka-Woźniak, K., & Luca, S. V. (2023). Essential Oils and Sustainability: In Vitro Bioactivity Screening of Myristica fragrans Houtt. Post-Distillation By-Products. Plants, 12(9). https://doi.org/10.3390/plants12091741
  35. Vangoori, Y., Dakshinamoorthi, A., Prabhakar Rao, R., David, D. C., & Anantha Babu, K. (2018). Effect of Myristica fragrans extract on food intake and body weight in experimental models. Journal of Clinical and Diagnostic Research, 12(2), FF01–FF05. https://doi.org/10.7860/JCDR/2018/28944.11169
  36. Wongrakpanich, S., Wongrakpanich, A., Melhado, K., & Rangaswami, J. (2018). A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging and Disease, 9(1), 143–150. https://doi.org/10.14336/AD.2017.0306
  37. Yang, A. H., Zhang, L., Zhi, D. X., Liu, W. L., Gao, X., & He, X. (2018). Identification and analysis of the reactive metabolites related to the hepatotoxicity of safrole. Xenobiotica, 48(11), 1164–1172. https://doi.org/10.1080/00498254.2017.1399227
  38. Zhang, W. K., Tao, S. S., Li, T. T., Li, Y. S., Li, X. J., Tang, H. Bin, Cong, R. H., Ma, F. L., & Wan, C. J. (2016). Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food and Nutrition Research, 60. https://doi.org/10.3402/fnr.v60.30849
  39. Zhanga, C. R., Jayashree, E., Kumar, P. S., & Nair, M. G. (2015). Antioxidant and antiinflammatory compounds in nutmeg (myristica fragrans) pericarp as determined by in vitro assays. Natural Product Communications, 10(8), 1399–1402. https://doi.org/10.1177/1934578x1501000822

Open Access Copyright (c) 2025 Aulia Rahmatun Nufus, Nirwana Lazuardi Sary, Fauzul Husna
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here