Effectiveness of synbiotic red dragon fruit yogurt on glucose and oxidative stress in metabolic syndrome rats

Ninik Rustanti* -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Nyoman Putri Ari Armelinda -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Kharisma Dwi Febriandina -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Martha Ardiaria -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Ayu Rahadiyanti -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Mursid Tri Susilo -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia
Adriyan Pramono -  Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Indonesia

Supp. File(s): common.other
Metabolic syndrome is still a global health problem, especially in Indonesia. Oxidative stress is related to metabolic syndrome because it is triggered by hyperglycemia. Synbiotic yogurt containing the whole red dragon fruit has antioxidant and synbiotic potential. This study aimed to determine the effect of synbiotic yogurt with whole red dragon fruit on fasting blood glucose (FBG) and malondialdehyde (MDA) levels in rats with metabolic syndrome. The design of this study was true-experimental, with a pre-post test and randomized control group design. A total of 24 male Sprague Dawley rats were divided into four groups (K-, K+, P1, P2). Groups K+, P1, and P2 were fed a high-fat, high-fructose diet (HFHFD) for 2 weeks. Groups P1 and P2 were administered synbiotic yogurt intervention of 0,009 mL/gBB/day and 0,018 mL/gBB/day, respectively, for 4 weeks. GOD-PAP method for FBG analysis and TBARS method for MDA analysis.  Data were analyzed using the paired t-test and One-Way ANOVA test. The P1 and P2 groups experienced a significant decrease in FBG levels by 63,45% and 76,07%, respectively (p<0,001), and a significant decrease in MDA by 26,1% and 37,2%, respectively (p<0,001). In conclusion, the administration of synbiotic yogurt at 0,018 mL/gBB/day (200 mL/day for humans) for four weeks was effective in reducing FBG and MDA levels.

Supplement Files

Keywords : Antidiabetes, red dragon fruit, probiotics, metabolic syndrome, yogurt

  1. Abbasian, M., Delvarianzadeh, M., Ebrahimi, H., Khosravi, F., & Nourozi, P. (2018). Relationship between serum levels of oxidative stress and metabolic syndrome components. Diabetes & Metabolic Syndrome, 12(4), 497–500. https://doi.org/10.1016/j.dsx.2018.03.015
  2. Abdelmoneim, D., El-Adl, M., El-Sayed, G., & El-Sherbini, E. S. (2021). Protective effect of fenofibrate against high-fat–high-fructose diet induced non-obese NAFLD in rats. Fundamental and Clinical Pharmacology, 35(2), 379–388. https://doi.org/10.1111/fcp.12597
  3. Ahsani, D. N., & Fidianingsih, I. (2018). Age-related changes of malondialdehyde, body weight and organ weight in male mice. Universa Medicina, 37(2), 115–126. https://doi.org/10.18051/UnivMed.2018.v37.115-126
  4. Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9). https://doi.org/10.3390/biom9090430
  5. Asemi, Z., Khorrami-Rad, A., Alizadeh, S. A., Shakeri, H., & Esmaillzadeh, A. (2014). Effects of synbiotic food consumption on metabolic status of diabetic patients: A double-blind randomized cross-over controlled clinical trial. Clinical Nutrition, 33(2), 198–203. https://doi.org/10.1016/j.clnu.2013.05.015
  6. Bernardes, N., Ayyappan, P., De Angelis, K., Bagchi, A., Akolkar, G., da Silva Dias, D., Belló-Klein, A., & Singal, P. K. (2017). Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Canadian Journal of Physiology and Pharmacology, 95(10), 1078–1090. https://doi.org/10.1139/cjpp-2016-0663
  7. Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., Rossi, G., & Eleuteri, A. M. (2018). SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Molecular Neurobiology, 55(10), 7987–8000. https://doi.org/10.1007/s12035-018-0973-4
  8. Chenxu, G., Shaoyu, Z., Lili, L., Dai, X., Kuang, Q., Qiang, L., Linfeng, H., Deshuai, L., Jun, T., & Minxuan, X. (2021). Betacyanins attenuates diabetic nephropathy in mice by inhibiting fibrosis and oxidative stress via the improvement of Nrf2 signaling. Journal of Functional Foods, 81, 104403. https://doi.org/10.1016/j.jff.2021.104403
  9. Da Silva, D. V. T., Pereira, A. D., Boaventura, G. T., Ribeiro, R. S. D. A., Verícimo, M. A., De Carvalho-Pinto, C. E., Baião, D. D. S., Del Aguila, E. M., & Paschoalin, V. M. F. (2019). Short-term betanin intake reduces oxidative stress in wistar rats. Nutrients, 11(9), 1978. https://doi.org/10.3390/nu11091978
  10. Dewi, P. L. P., & Kartini, A. (2017). Hubungan Pengetahuan Gizi, Aktivitas Fisik dan Asupan Energi, Asupan Lemak dengan Kejadian Obesitas pada Remaja SMP. Journal of Nutrition College, 6(3), 257. https://doi.org/10.14710/jnc.v6i3.16918
  11. Elvina R, D., & Adriaria, M. (2016). Efek Pemberian Seduhan Kulit Buah Naga Merah (Hylocerheus Polyrhizus) Terhadap Kadar Glukosa Darah Tikus Sprague Dawley Hiperglikemia. Journal of Nutrition College, 5(4), 475–483. https://doi.org/10.14710/jnc.v5i4.16461
  12. Fardet, A., & Rock, E. (2018). In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence. Nutrition Research Reviews, 31(1), 52–70. https://doi.org/10.1017/S0954422417000191
  13. Fatmawati, I. (2019). Asupan gula sederhana sebagai faktor risiko obesitas pada siswa-siswi sekolah menengah pertama di kecamatan pamulang, kota tangerang selatan. Ilmu Gizi Indonesia, 2(2), 147–154. https://doi.org/10.35842/ilgi.v2i2.113
  14. Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944
  15. Francisqueti, F. V., Chiaverini, L. C. T., Dos Santos, K. C., Minatel, I. O., Ronchi, C. B., Ferron, A. J. T., Ferreira, A. L. A., & Corrêa, C. R. (2017). The role of oxidative stress on the pathophysiology of metabolic syndrome. Revista Da Associacao Medica Brasileira, 63(1), 85–91. https://doi.org/10.1590/1806-9282.63.01.85
  16. Garcia, C., & Blesso, C. N. (2021). Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radical Biology and Medicine, 172, 152–166. https://doi.org/10.1016/j.freeradbiomed.2021.05.040
  17. Gunawan, S., Aulia, A., & Soetikno, V. (2021). Development of rat metabolic syndrome models: A review. Veterinary World, 14(7), 1774–1783. https://doi.org/10.14202/vetworld.2021.1774-1783
  18. Hadi, A., Alizadeh, K., Hajianfar, H., Mohammadi, H., & Miraghajani, M. (2020). Efficacy of synbiotic supplementation in obesity treatment: A systematic review and meta-analysis of clinical trials. Critical Reviews in Food Science and Nutrition, 60(4), 584–596. https://doi.org/10.1080/10408398.2018.1545218
  19. Hajifaraji, M., Jahanjou, F., Abbasalizadeh, F., Aghamohammadzadeh, N., Abbasi, M. M., & Dolatkhah, N. (2018). Effect of probiotic supplements in women with gestational diabetes mellitus on inflammation and oxidative stress biomarkers: A randomized clinical trial. Asia Pacific Journal of Clinical Nutrition, 27(3), 581–591. https://doi.org/10.6133/apjcn.082017.03
  20. Hijová, E. (2022). Synbiotic supplements in the prevention of obesity and obesity-related diseases. Metabolites, 12(4), 313. https://doi.org/10.3390/metabo12040313
  21. Khairani, A. F., Atik, N., Rahman, P. H. A., Rohmawaty, E., Noviyanti, C., Santika, R., Arimathea, J., & Shalannandia, W. A. (2022). Purple sweet potato yogurt affects lipid metabolism and reduces systemic inflammation and oxidative stress in high fat diet mice. Indonesian Biomedical Journal, 14(3), 252–260. https://doi.org/10.18585/inabj.v14i3.1921
  22. Khoo, H. E., He, X., Tang, Y., Li, Z., Li, C., Zeng, Y., Tang, J., & Sun, J. (2022). Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Frontiers in Nutrition, 9, 894438. https://doi.org/10.3389/fnut.2022.894438
  23. Kosnayani, A. S., Dharmana, E., Hadisaputro, S., & Riwanto, I. (2021). Pengaruh Kombinasi Metformin dan Ekstrak Air Meniran (Phyllanthus Niruri Linn.) terhadap Perbaikan Status Obesitas Tikus Sprague Dawley Jantan Effect Combination of Metformin and Meniran (Phyllanthus niruri Linn.) Water Extract on the Improvement of Obesi. Amerta Nutrition, 5, 52–58. https://doi.org/10.20473/amnt.v5i1.2021.
  24. Le Bourgot, C., Apper, E., Blat, S., & Respondek, F. (2018). Fructo-oligosaccharides and glucose homeostasis: A systematic review and meta-analysis in animal models. Nutrition and Metabolism, 15(1), 1–15. https://doi.org/10.1186/s12986-018-0245-3
  25. Mahmoud, I., & Sulaiman, N. (2022). Prevalence of Metabolic Syndrome and Associated Risk Factors in the United Arab Emirates: A Cross-Sectional Population-Based Study. Frontiers in Public Health, 9(January), 1–8. https://doi.org/10.3389/fpubh.2021.811006
  26. Maulidha, N., Fridayanti, A., & Masruhim, M. A. (2015). Uji aktivitas antioksidan ekstrak daun sirih hitam (Piper sp.) terhadap DPPH (1, 1-Diphenyl-2-Picryl Hydrazyl). Jurnal Sains Dan Kesehatan, 1(1), 16–20. https://doi.org/10.25026/jsk.v1i1.10
  27. Maurer Sost, M., Stevens, Y., Salden, B., Troost, F., Masclee, A., & Venema, K. (2023). Citrus extract high in flavonoids beneficially alters intestinal metabolic responses in subjects with features of metabolic syndrome. Foods, 12(18). https://doi.org/10.3390/foods12183413
  28. Mousavi, M., Abedimanesh, N., Mohammadnejad, K., Sharini, E., Nikkhah, M., Eskandari, M. R., Motlagh, B., Mohammadnejad, J., Khodabandehloo, H., Fathi, M., & Talebi, M. (2022). Betanin alleviates oxidative stress through the Nrf2 signaling pathway in the liver of STZ-induced diabetic rats. Molecular Biology Reports, 49(10), 9345–9354. https://doi.org/10.1007/s11033-022-07781-8
  29. Nisa, H. C., Jannah, M., Ruhaiyah, F., & Kurniasih, E. (2021). Review sintesis fruktooligosakarida berbasis sukrosa jalur fermentasi: sinbiotic applied. Jurnal Teknik Dan Teknologi, 16(31), 22–27.
  30. Nocianitri, K. A., Sujaya, I. N., & Ramona, Y. (2016). Aktivitas antioksidan Lactobacillus spp untuk pengembangan antioksidan probiotik. Media Ilmiah Teknologi Pangan, 3(1), 44–53.
  31. Nurhayati, Kusuma, G., & Maryanto. (2015). Sifat kimia selai buah naga, komposisi mikroflora dan profil scfa feses relawan. Jurnal Teknologi Dan Industri Pangan, 26(2), 213–221. https://doi.org/10.6066/jtip.2015.26.2.213
  32. Nuriannisa, F., Kertia, N., & Lestari, L. A. (2019). Efek Konsumsi Yogurt Terhadap Glukosa Darah Puasa Pada Penyandang Diabetes Melitus Tipe 2. Jurnal Gizi Indonesia, 8(1), 1–5. https://doi.org/10.14710/jgi.8.1.40-44
  33. Octavia, Z. F., Djamiatun, K., & Suci, N. (2017). Pengaruh Pemberian Yogurt Sinbiotik Tepung Pisang Tanduk terhadap Profil Lipid Tikus Sindrom Metabolik. Jurnal Gizi Klinik Indonesia, 13(4), 159–169. https://doi.org/10.22146/ijcn.19369
  34. Oliveira, H., Fernandes, A., Brás, N. F., Mateus, N., de Freitas, V., & Fernandes, I. (2020). Anthocyanins as antidiabetic agents—in vitro and in silico approaches of preventive and therapeutic effects. Molecules, 25(17), 1–30. https://doi.org/10.3390/molecules25173813
  35. Pourrajab, B., Fatahi, S., Sohouli, M. H., Găman, M. A., & Shidfar, F. (2021). The effects of probiotic/synbiotic supplementation compared to placebo on biomarkers of oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 62(2), 490–507. https://doi.org/10.1080/10408398.2020.1821166
  36. Prabowo, R. (2020). Pengaruh Pemberian Sari Bengkuang (Pachirhyus erosus) dan Kefir Grains sebagai Minuman Sinbiotik terhadap Kadar Malondialdehid (MDA) dan Superoxide Dismutase (SOD) Hepar Tikus yang Diinduksi Hiperlipidemia [Skripsi]. Yogyakarta: Universitas Islam Indonesia.
  37. Prasanti, N. I. (2023). Pengembangan Yoghurt Kulit dan Daging Buah Naga Merah (Hylocereus polyrhizus) sebagai Alternatif Pangan Sumber Antioksidan [Skripsi]. Semarang: Universitas Diponegoro.
  38. Pratiwi, G. K., Alatas, F., & Putri, D. A. (2021). Efek ekstrak air kulit buah naga merah (Hylocereus polyrhizus) terhadap aktivitas tabir surya etilheksil metoksisinamat. Medika Kartika: Jurnal Kedokteran Dan Kesehatan, 4(2), 122–131. https://doi.org/10.35990/mk.v4n2.p122-131
  39. Pratiwi, N. F., Kristiani, E. B. E., & Kasmiyati, S. (2019). Buah naga berpotensi lebih tinggi sebagai sumber antioksidan dibandingkan buah bit. Seminar Nasional Sains Dan Entreupreneurship VI, 1(1).
  40. Putri, M. D., Wiboworini, B., & Dirgahayu, P. (2021). Red dragon fruit juice in reducing ros levels and insulin resistance in rats with type 2 diabetes mellitus model. Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition), 10(1), 6–14. https://doi.org/10.14710/jgi.10.1.6-14
  41. Putriningtyas, N. D., Mardiana, M., & Wahyuningsih, S. (2021). Effect differences of fermented and non-fermented red dragon fruit peel on blood glucose levels of hypercholestrolemic Wistar rats. Di dalam: Proceedings of the 5th International Conference on Sports, Health, and Physical Education; 28-29 April 2021; Semarang: ISMINA. https://doi.org/10.4108/eai.28-4-2021.2312240
  42. Rahmawati, A. (2014). Mekanisme terjadinya inflamasi dan stres oksidatif pada obesitas. El–Hayah, 5(1), 1–8. https://doi.org/10.18860/elha.v5i1.3034
  43. Rahmawati, F. C., Djamiatun, K., & Suci, N. (2017). Pengaruh yogurt sinbiotik pisang terhadap kadar glukosa dan insulin tikus sindrom metabolik. Jurnal Gizi Klinik Indonesia, 14(1), 10–18. https://doi.org/10.22146/ijcn.19379
  44. Rajendiran, D., Packirisamy, S., & Gunasekaran, K. (2018). A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research, 11(2), 48–53. https://doi.org/10.22159/ajpcr.2018.v11i2.23241
  45. Ratimba, K., Valen, R., & Tandi, J. (2019). Uji aktivitas fraksi buah naga merah terhadap penurunan glukosa darah tikus yang diinduksi streptozotocin. Farmakologika Farmasi, 16(1), 35–47.
  46. Risdayani, E., & Makmun, A. (2021). Hubungan obesitas dengan usia, jenis kelamin, genetik, asupan makanan dan kebiasaan di dusun bangkan. Indonesian Journal of Health, 2(1), 55–67. https://doi.org/10.33368/inajoh.v2i1.38
  47. Riyanto, S., & Muwarni, H. (2015). Yoghurt kedelai hitam (black soyghurt) dapat menurunkan kadar LDL tikus hiperkolesterolemia. Jurnal Gizi Dan Dietetik Indonesia, 3(1), 1–9. https://doi.org/10.21927/ijnd.2015.3(1).1-9
  48. Rodzik, A., Pomastowski, P., Sagandykova, G. N., & Buszewski, B. (2020). Interactions of whey proteins with metal ions. International Journal of Molecular Sciences, 21(6), 2156. https://doi.org/10.3390/ijms21062156
  49. Rohin, M. A. K., Abu Bakar, C. A., & Ali, A. M. (2014). Isolation and characterization of oligosaccharides composition in organically grown red pitaya, white pitaya and papaya. International Journal of Pharmacy and Pharmaceutical Sciences, 6(2), 131–136.
  50. Rusip, G., Ilyas, S., Lister, I. N. E., Ginting, C. N., & Mukti, I. (2022). The effect of ingestion of red dragon fruit extract on levels of malondialdehyde and superoxide dismutase after strenuous exercise in rats (Rattus norvegicus). F1000Research, 10, 1061. https://doi.org/10.12688/f1000research.54254.3
  51. Saenjum, C., Pattananandecha, T., & Nakagawa, K. (2021). Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. In Molecules (Vol. 26, Issue 12, p. 3565). https://doi.org/10.3390/molecules26123565
  52. Salehi, B., Sharifi-Rad, J., Cappellini, F., Reiner, Z., Zorzan, D., Imran, M., Sener, B., Kilic, M., El-Shazly, M., Fahmy, N. M., Al-Sayed, E., Martorell, M., Tonelli, C., Petroni, K., Docea, A. O., Calina, D., & Maroyi, A. (2020). The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Frontiers in Pharmacology, 11, 1300. https://doi.org/10.3389/fphar.2020.01300
  53. Salsabila, D. M., Maryusman, T., & Fatmawati, I. (2020). Pengaruh sinbiotik kefir tepung pisang batu (Musa balbisiana) terhadap kadar glukosa darah tikus sindrom metabolik. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(1), 18–27. https://doi.org/10.29122/jbbi.v7i1.3730
  54. Septiana, W. C., & Ardiaria, M. (2016). Efek pemberian seduhan kulit buah naga merah (Hylocereus polyrhizus) terhadap kadar malondialdehyde (MDA) tikus Sprague Dawley dislipidemia. Journal of Nutrition College, 5(4), 344–352. https://doi.org/10.14710/jnc.v5i4.16434
  55. Sharma, P., Bhardwaj, P., & Singh, R. (2016). Administration of lactobacillus casei and bifidobacterium bifidum ameliorated hyperglycemia, dyslipidemia, and oxidative stress in diabetic rats . International Journal of Preventive Medicine, 7(1), 102. https://doi.org/10.4103/2008-7802.188870
  56. Sigit, F. S., Tahapary, D. L., Trompet, S., Sartono, E., Willems Van Dijk, K., Rosendaal, F. R., & De Mutsert, R. (2020). The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: A cross-sectional analysis of two population-based studies. Diabetology and Metabolic Syndrome, 12(1), 1–11. https://doi.org/10.1186/s13098-019-0503-1
  57. Solikhah, T. I., Rani, C. A., Septiani, M., Putra, Y. A., Rachmah, Q., Solikhah, G. P., Agustono, B., Yunita, M. N., & Purnama, M. T. (2022). Antidiabetic of Hylocereus polyrhizus peel ethanolic extract on alloxan induced diabetic mice. Iraqi Journal of Veterinary Sciences, 36(3), 797–802. https://doi.org/10.33899/ijvs.2022.132178.2061
  58. Susanti, R., & Hidayat, E. (2016). Profil Protein Susu dan Produk Olahannya. Jurnal MIPA, 39(2), 98–106. https://doi.org/10.15294/ijmns.v39i2.9282
  59. Tan, B. L., & Norhaizan, M. E. (2019). Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients, 11(11), 2579. https://doi.org/10.3390/nu11112579
  60. Tang, W., Dong, M., Wang, W., Han, S., Rui, X., Chen, X., Jiang, M., Zhang, Q., Wu, J., & Li, W. (2017). Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers, 173, 654–664. https://doi.org/10.1016/j.carbpol.2017.06.039
  61. Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893
  62. Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., Wang, Y., & Li, W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9(5), 521. https://doi.org/10.3390/nu9050521
  63. Wu, J., Jiang, Z., Zhang, H., Liang, W., Huang, W., Zhang, H., Li, Y., Wang, Z., Wang, J., Jia, Y., Liu, B., & Wu, H. (2018). Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2. Free Radical Biology and Medicine, 124, 454–465. https://doi.org/10.1016/j.freeradbiomed.2018.06.034
  64. Wu, S. S., Kor, C. T., Chen, T. Y., Liu, K. H., Shih, K. L., Su, W. W., & Wu, H. M. (2019). Relationships between serum uric acid, malondialdehyde levels, and carotid intima-media thickness in the patients with metabolic syndrome. Oxidative Medicine and Cellular Longevity, 2019, 6859757. https://doi.org/10.1155/2019/6859757
  65. Xue, L., He, J., Gao, N., Lu, X., Li, M., Wu, X., Liu, Z., Jin, Y., Liu, J., Xu, J., & Geng, Y. (2017). Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Scientific Reports, 7(1), 45176. https://doi.org/10.1038/srep45176
  66. Yu, P., Yuan, R., Yang, X., & Qi, Z. (2019). Adipose tissue, aging, and metabolism. Current Opinion in Endocrine and Metabolic Research, 5, 11–20. https://doi.org/10.1016/j.coemr.2019.02.003
  67. Yuliana, A. R., & Ardiaria, M. (2016). Efek pemberian seduhan kulit buah naga merah (Hylocereus polyrhizus) terhadap kadar trigliserida tikus Sprague Dawley dislipidemia. Journal of Nutrition College, 5(4), 428–437. https://doi.org/10.14710/jnc.v5i4.16454
  68. Yusni, Y., & Yusuf, H. (2022). A close positive association between obesity and blood pressure in rats. Jurnal Kedokteran Hewan - Indonesian Journal of Veterinary Sciences, 16(1), 29–33. https://doi.org/10.21157/j.ked.hewan.v16i1.23913
  69. Zulfahmidah, Fajriansyah, F., Makmun, A., & Rasfahyana, R. (2021). Hubungan obesitas dan stress oksidatif. UMI Medical Journal, 6(1), 62–69. https://doi.org/10.33096/umj.v6i1.140

Open Access Copyright (c) 2025 Ninik Rustanti, Nyoman Putri Ari Armelinda, Kharisma Dwi Febriandina, Martha Ardiaria, Ayu Rahadiyanti, Mursid Tri Susilo, Adriyan Pramono
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here