Association between serum cholinesterase levels and body composition in vegetable farmers assessed by bioelectrical impedance analysis
Exposure to all pesticide classes can have a disruptive effect on metabolism and energy storage. The bioindicator that can be used to identify farmers exposed to pesticides is acetylcholinesterase (AChE). AChE can be a good indicator for changes in body composition due to its associations with various metabolic and physiological parameters. Abnormal AChE levels stimulate nicotinic and muscarinic receptors in various organs, causing a wide range of metabolic disorders, including changes in the body composition. This study aimed to examine the correlation between long-term pesticide exposure and potential alterations in body composition. This research was conducted in Sagarahiang village, one of the highest vegetable producers in Kuningan, West Java onJuly-August 2024. And it was a cross-sectional study of 46 farmers who sprayed pesticides in vegetable areas and was determined by purposive sampling. Data collected through interview using questionnaires and some tools, like indicators of pesticide exposure were measured by cholinesterase serum and history of exposure, whereas parameters of body composition were measured by bioelectrical impedance analysis (BIA) using a body fat monitor with eight electrodes. Data analysis using the Pearson correlation test. The percentage of subjects with abnormal AChE activity was four persons (8,9%). AChE levels had no correlation with all components of the exposure history, but had a significant correlation with body composition parameters (p<0,05), body weight (p=0,027), Body Mass Index (BMI) (p=0,020), total fat (p=0,038), visceral fat (p=0,030), and resting metabolism (p=0,037) with a weak correlation (R 0,31-0,34). Based on this study, AChE is not strong enough to assess changes in body composition clinically.
Keywords : AChE, pesticide exposure, body composition, BIA, vegetable farmers
- Abdel Aziz, N. S., Elawad, M. Y., Aboulmakarem Rizk, S., Hakim, S. A., Shahy, E. M., & Abdel-Shafya, E. (2021). Inflammatory cytokines, oxidative stress biomarkers and clinical manifestations of organophosphorus pesticides-exposed researchers. Egyptian Journal of Chemistry, 64(4), 2235–2245. https://doi.org/10.21608/EJCHEM.2021.52948.3094
- Adeyinka, A., Muco, E., & Pierre, L. (2020). Organophosphates - StatPearls - NCBI Bookshelf. In StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK499860/
- Aroniadou-Anderjaska, V., Figueiredo, T. H., de Araujo Furtado, M., Pidoplichko, V. I., & Braga, M. F. M. (2023). Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition. Toxics, 11(10). https://doi.org/10.3390/toxics11100866
- Budiawan, A. R. (2014). Faktor risiko yang berhubungan dengan cholinesterase pada petani bawang merah di Ngurensiti Pati. Unnes Journal of Public Health, 3(1), 1–11. https://doi.org/10.15294/ujph.v3i1.3533
- Cander, S., & Yetkin, İ. (2023). Effects of endocrine-disrupting chemicals on obesity and diabetes. Endocrinology Research and Practice, 27(4), 233–240. https://doi.org/10.5152/erp.2023.23309
- Cestonaro, L. V., Macedo, S. M. D., Piton, Y. V., Garcia, S. C., & Arbo, M. D. (2022). Toxic effects of pesticides on cellular and humoral immunity: An overview. Immunopharmacology and Immunotoxicology, 44(6), 816–831. https://doi.org/10.1080/08923973.2022.2096466
- Damalas, C. A., & Koutroubas, S. D. (2016). Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics, 4(1), 1–10. https://doi.org/10.3390/toxics4010001
- Glover, F., Eisenberg, M. L., Belladelli, F., Del Giudice, F., Chen, T., Mulloy, E., & Caudle, W. M. (2022). The association between organophosphate insecticides and blood pressure dysregulation: NHANES 2013–2014. Environmental Health: A Global Access Science Source, 21(1), 74. https://doi.org/10.1186/s12940-022-00887-3
- Glover, F., Steenland, K., Eisenberg, M. L., Belladelli, F., Mulloy, E., Del Giudice, F., & Caudle, W. M. (2022). The association between organophosphate insecticides, blood pressure dysregulation, and metabolic syndrome among U.S. adults: NHANES 2015-2016. Hygiene and Environmental Health Advances, 4. https://doi.org/10.1016/j.heha.2022.100035
- He, B., Ni, Y., Jin, Y., & Fu, Z. (2020). Pesticides-induced energy metabolic disorders. Science of the Total Environment, 729. https://doi.org/10.1016/j.scitotenv.2020.139033
- Heindel, J. J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M. A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L. N., & vom Saal, F. (2017). Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 68, 3–33. https://doi.org/10.1016/j.reprotox.2016.10.001
- How, V., Singh, S., Thinh, D. Q., Guo, H. R., Chokeli, R., & Yuswir, N. S. (2020). Association of blood cholinesterase with sexual differences in metabolic health risks among villagers from pesticide-treated farming villages. Journal of Ecophysiology and Occupational Health, 20(1&2), 6–12. https://doi.org/10.18311/jeoh/2020/24418
- Ibrahim, I., & Sillehu, S. (2022). Identifikasi aktivitas penggunaan pestisida kimia yang berisiko pada kesehatan petani hortikultura. JUMANTIK (Jurnal Ilmiah Penelitian Kesehatan), 7(1), 7. https://doi.org/10.30829/jumantik.v7i1.10332
- Ito, Y., Kaji, M., Sakamoto, E., & Terauchi, Y. (2019). The beneficial effects of a muscarinic agonist on pancreatic β-cells. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-52691-8
- Javeres, M. N. L., Habib, R., Laure, N. J., Shah, S. T. A., Valis, M., Kuca, K., & Nurulain, S. M. (2021). Chronic exposure to organophosphates pesticides and risk of metabolic disorder in cohort from Pakistan and Cameroon. International Journal of Environmental Research and Public Health, 18(5), 1–13. https://doi.org/10.3390/ijerph18052310
- Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: formulants, distribution pathways and effects on human health – A review. Toxicology Reports, 8, 1179–1192. https://doi.org/10.1016/j.toxrep.2021.06.004
- Kshatri, J. S., Satpathy, P., Sharma, S., Bhoi, T., Mishra, S. P., & Sahoo, S. S. (2022). Health research in the state of Odisha, India: A decadal bibliometric analysis (2011‑2020). Journal of Family Medicine and Primary Care, 6(2), 169–170. https://doi.org/10.4103/jfmpc.jfmpc
- Li, A. J., & Kannan, K. (2018). Urinary concentrations and profiles of organophosphate and pyrethroid pesticide metabolites and phenoxyacid herbicides in populations in eight countries. Environment International, 121(September), 1148–1154. https://doi.org/10.1016/j.envint.2018.10.033
- Liem, J. F., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., Suryandari, D. A., Malik, S. G., & Pangaribuan, B. (2021). Cumulative exposure characteristics of vegetable farmers exposed to chlorpyrifos in central Java – Indonesia; A cross-sectional study. BMC Public Health, 21(1), 1–9. https://doi.org/10.1186/s12889-021-11161-5
- Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2. https://doi.org/10.1038/sigtrans.2017.23
- Lohman, Nagamin, & Rahman. (2019). Review timbangan omron HBF-214 alat ukur komposisi tubuh. In Galeri Medika. https://www.galerimedika.com/blog/Review-Timbangan-Omorn-HBF-214-Alat-Ukur-Komposisi-Tubuh
- Lopez-Yus, M., Hörndler, C., Borlan, S., Bernal-Monterde, V., & Arbones-Mainar, J. M. (2024). Unraveling adipose tissue dysfunction: Molecular mechanisms, novel biomarkers, and therapeutic targets for liver fat deposition. Cells, 13(5). https://doi.org/10.3390/cells13050380
- Manyilizu, W. B., Mdegela, R. H., Kazwala, R., Nonga, H., Muller, M., Lie, E., Skjerve, E., & Lyche, J. L. (2019). Association of long-term pesticide exposure and biologic parameters in female farm workers in Tanzania: A cross sectional study. Toxics, 4(4). https://doi.org/10.3390/toxics4040025
- Miyairi, Y., Ohkawara, B., Sato, A., Sawada, R., Ishii, H., Tomita, H., Inoue, T., Nakashima, H., Ito, M., Masuda, A., Hosono, Y., Imagama, S., & Ohno, K. (2024). A class of chemical compounds enhances clustering of muscle nicotinic acetylcholine receptor in cultured myogenic cells. Biochemical and Biophysical Research Communications, 731(July), 150400. https://doi.org/10.1016/j.bbrc.2024.150400
- Nunn, E. R., Shinde, A. B., & Zaganjor, E. (2022). Weighing in on adipogenesis. Frontiers in Physiology, 13(February). https://doi.org/10.3389/fphys.2022.821278
- Oda, E. (2015). Serum cholinesterase is inversely associated with body weight change in men undergoing routine health screening. Internal Medicine, 54(19), 2427–2432. https://doi.org/10.2169/internalmedicine.54.4335
- Santillana, N., Astudillo-Guerrero, C., D’Espessailles, A., & Cruz, G. (2023). White adipose tissue dysfunction: pathophysiology and emergent measurements. Nutrients, 15(7), 1–15. https://doi.org/10.3390/nu15071722
- Setyowati, R. D., Widyastutik, O., & Selviana. (2023). Determinan penggunaan APD pada petani penyemprot pestisda di Desa Ambawang Kuala. Jurnal Mahasiswa Dan Peneliti Kesehatan (JUMANTIK), 10(1), 1–10. https://doi.org/10.29406/jjum.v10i1.4890
- Shentema, M. G., Kumie, A., Bråtveit, M., Deressa, W., Ngowi, A. V., & Moen, B. E. (2020). Pesticide use and serum acetylcholinesterase levels among flower farm workers in Ethiopia—a cross-sectional study. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030964
- Wicaksono, R. I., Manunel, E. S., Pawitra, A. S., Diyanah, K. C., Keman, S., Azizah, R., & Yudhastuti, R. (2023). Literature review: Impact of organophosphate pesticide exposure on cholinesterase enzyme activity and associated risk factors for poisoning, 2017-2020. Jurnal Kesehatan Lingkungan, 15(4), 247–256. https://doi.org/10.20473/jkl.v15i4.2023.247-256
- Zhao, Y., Yan, H., Liu, K., Ma, J., Sun, W., Lai, H., Li, H., Gu, J., & Huang, H. (2024). Acetylcholine receptor-β inhibition in skeletal muscles.pdf. Molecular Medicine. https://doi.org/10.1186/s10020-024-00943-3
- Zhu, L., Rossi, M., Cohen, A., Pham, J., Zheng, H., Dattaroy, D., Mukaibo, T., Melvin, J. E., Langel, J. L., Hattar, S., Matschinsky, F. M., Appella, D. H., Doliba, N. M., & Wess, J. (2019). Allosteric modulation of β-cell M3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18684–18690. https://doi.org/10.1073/pnas.1904943116
Copyright (c) 2025 Bibit Nasrokhatun Diniah, Sulistiyani, Tri Joko, Budiyono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.