Impact of chronic monosodium glutamate exposure on female reproductive health in an animal model
Monosodium glutamate (MSG) is a widely used food additive; however, its chronic effects on female reproductive health remain unclear. Previous studies have mainly focused on neurotoxic and metabolic outcomes, leaving a gap in understanding its impact on ovarian function. This study investigated the effects of chronic MSG exposure on ovarian structure and follicular development in female mice. An experimental post-test-only control group design was used at the Biomedical Laboratory, Poltekkes Kemenkes Riau, Indonesia, from August to October 2024. Twenty-four female Swiss mice (Mus musculus), aged 8–10 weeks and weighing 25–30 g, were randomly divided into four groups (n = 6 per group). The control group received standard feed, while the treatment groups were administered MSG orally at low (0,25 g/kg body weight/day), medium (1 g/kg body weight/day), and high (4 g/kg body weight/day) doses for eight weeks. Ovarian tissues were examined using histopathology and flow cytometry. Data were analyzed using one-way analysis of variance (ANOVA), post-hoc tests, and correlation analysis. The medium- and high-dose groups showed significant reductions in primary (12,3 ± 2,1; 8,7 ± 1,9) and secondary follicles (7,8 ± 1,5; 4,9 ± 1,2), accompanied by tissue degeneration and germ cell apoptosis. A strong negative correlation was observed between MSG dose and mature follicle count (r = –0,72; p < 0,01). In conclusion, these findings demonstrate dose-dependent ovarian impairment, underscoring the need for dietary risk evaluation and increased public awareness regarding excessive MSG consumption.ChE is not strong enough to assess changes in body composition clinically.
Keywords : Apoptosis, monosodium glutamate, oogenesis, ovarian health, reproductive toxicology
- Al-Otaibi, A. M., Emam, N. M., Elabd, H. K., & Esmail, N. I. (2022). Toxicity of monosodium glutamate intake on different tissues induced oxidative stress: A review. Journal of Medical and Life Science, 4(4), 68–81. https://doi.org/10.21608/jmals.2022.264345
- Al-Suhaimi, E. A., Khan, F. A., & Homeida, A. M. (2022). Regulation of male and female reproductive function. In Emerging concepts in endocrine structure and functions (pp. 287–347). Springer. https://doi.org/10.1007/978-3-030-93439-7_13
- Askar, M. E., Abdel-Maksoud, Y. T., Shaheen, M. A., & Eissa, R. G. (2025). Ameliorating monosodium glutamate-induced testicular dysfunction by modulating steroidogenesis, oxidative stress, inflammation, and apoptosis: Therapeutic role of hesperidin. Biochemical and Biophysical Research Communications, 771, 152032. https://doi.org/10.1016/j.bbrc.2024.152032
- Banerjee, A., Mukherjee, S., & Maji, B. K. (2021). Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicology Reports, 8, 938–961. https://doi.org/10.1016/j.toxrep.2021.04.020
- Caesar, J., Widjiati, W., Herupradoto, E. B. A., Sukmanadi, M., Madyawati, S. P., Plumeriastuti, H., & Luqman, E. M. (2024). Effect of curcumin nanoparticles on the number of preantral and antral follicles of white rats (Rattus norvegicus) exposed to carbon black. Open Veterinary Journal, 14(12), 3309–3316. https://doi.org/10.5455/OVJ.2024.v14.i12.4
- Chairunnisa, N. I. (2022). The effect of green tea extract (Camellia sinensis) on the number of ovarian follicles of female white rat (Rattus norvegicus) exposed to MSG (monosodium glutamate): A literature review. Manganite: Journal of Chemistry and Education, 1(1), 8–14. https://doi.org/10.56709/manganite.v1i1.4
- Das, P. K., Mukherjee, J., & Banerjee, D. (2023). Female reproductive physiology. In Textbook of veterinary physiology (pp. 513–568). Springer. https://doi.org/10.1007/978-981-99-7357-6_24
- de Vasconcelos, G. L., Maculan, R., da Cunha, E. V., Silva, A. W. B., Batista, A. L. S., Donato, M. A. M., Peixoto, C. A., Silva, J. R. V., & de Souza, J. C. (2020). Antral follicular count and its relationship with ovarian volume, preantral follicle population and survival, oocyte meiotic progression and ultrastructure of in vitro matured bovine cumulus–oocyte complexes. Zygote, 28(6), 495–503. https://doi.org/10.1017/S0967199420000125
- Ducreux, B., Ferreux, L., Patrat, C., & Fauque, P. (2023). Overview of gene expression dynamics during human oogenesis/folliculogenesis. International Journal of Molecular Sciences, 25(1), 33. https://doi.org/10.3390/ijms25010033
- Fineschi, B. (2022). Selection of competent oocytes by morphological features: Can an artificial intelligence-based model predict oocyte quality? Journal of Assisted Reproduction and Genetics, 39, 1403–1414. https://doi.org/10.1007/s10815-022-02524-9
- Hamdalla, H. M., Ahmed, R. R., Galaly, S. R., & Abdul-Hamid, M. (2023). Effects of quercetin on ovarian toxicity induced by dietary monosodium glutamate. Cell and Tissue Biology, 17(5), 543–556. https://doi.org/10.1134/S1990519X23050112
- Jozkowiak, M., Piotrowska-Kempisty, H., Kobylarek, D., Gorska, N., Mozdziak, P., Kempisty, B., Rachon, D., & Spaczynski, R. Z. (2022). Endocrine disrupting chemicals in polycystic ovary syndrome: The relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction. Cells, 12(1), 174. https://doi.org/10.3390/cells12010174
- Kadir, E. R., Yakub, A. D., Ojulari, L. S., Hussein, A. O., Lawal, I. A., Jaji-Sulaimon, R., & Ajao, M. S. (2024). Cytoarchitectural differences in reproductive organs of some polycystic ovary-like induced animal models. Tissue and Cell, 89, 102456. https://doi.org/10.1016/j.tice.2024.102456
- Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon, 9(9), e21055. https://doi.org/10.1016/j.heliyon.2023.e21055
- Kayode, O. T., Rotimi, D. E., Kayode, A. A. A., Olaolu, T. D., & Adeyemi, O. S. (2020). Monosodium glutamate (MSG)-induced male reproductive dysfunction: A mini review. Toxics, 8(1), 7. https://doi.org/10.3390/toxics8010007
- Kesherwani, R., Bhoumik, S., Kumar, R., & Rizvi, S. I. (2024). Monosodium glutamate even at low dose may affect oxidative stress, inflammation and neurodegeneration in rats. Indian Journal of Clinical Biochemistry, 39(1), 101–109. https://doi.org/10.1007/s12291-023-01127-1
- Liu, S., Jia, Y., Meng, S., Luo, Y., Yang, Q., & Pan, Z. (2023). Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review. International Journal of Molecular Sciences, 24(11), 9205. https://doi.org/10.3390/ijms24119205
- Moghadam, A. R. E., Moghadam, M. T., Hemadi, M., & Saki, G. (2022). Oocyte quality and aging. JBRA Assisted Reproduction, 26(1), 105–115. https://doi.org/10.5935/1518-0557.20220007
- Mondal, M., Sarkar, K., Nath, P. P., & Paul, G. (2018). Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environmental Toxicology, 33(2), 198–208. https://doi.org/10.1002/tox.22507
- Nazam, N., Jabir, N. R., Ahmad, I., Alharthy, S. A., Khan, M. S., Ayub, R., & Tabrez, S. (2023). Phenolic acids-mediated regulation of molecular targets in ovarian cancer: Current understanding and future perspectives. Pharmaceuticals, 16(2), 274. https://doi.org/10.3390/ph16020274
- Ogunmokunwa, A. E., & Ibitoye, B. O. (2025). Monosodium glutamate (MSG) exposure induced oxidative stress and disrupted testicular hormonal regulation, exacerbating reproductive dysfunction in male Wistar rats. Endocrine and Metabolic Science, 17, 100226. https://doi.org/10.1016/j.endmts.2025.100226
- Osawa, Y. (2022). The socio-cultural reception of MSG (monosodium glutamate) in Thailand. In Making food in local and global contexts: Anthropological perspectives (pp. 55–68). Springer. https://doi.org/10.1007/978-3-030-99691-3_4
- Othman, S. Al, & Suliman, R. (2020). How pectin play a role in histological changes by monosodium glutamate (MSG) in the ovary of mice? Annals of R.S.C.B., 24(4), 9020–9030. http://annalsofrscb.ro
- Reid, K., & Price, B. (2023). Fat, stressed, and sick: MSG, processed food, and America’s health crisis. Rowman & Littlefield. https://rowman.com/ISBN/9781538169601
- Rinninella, E., Cintoni, M., Raoul, P., Mora, V., Gasbarrini, A., & Mele, M. C. (2021). Impact of food additive titanium dioxide on gut microbiota composition, microbiota-associated functions, and gut barrier: A systematic review of in vivo animal studies. International Journal of Environmental Research and Public Health, 18(4), 2008. https://doi.org/10.3390/ijerph18042008
- Sarmento, E. B., Sassone, L. M., Pinto, K. P., Ferreira, C. M. A., da Fidalgo, T. K. S., Lopes, R. T., Alves, A. T. N. N., Freitas-Fernandes, L. B., Valente, A. P., & Neves, R. H. (2025). Evaluation of a potential bidirectional influence of metabolic syndrome and apical periodontitis: An animal-based study. International Endodontic Journal, 58(5), 517–530. https://doi.org/10.1111/iej.14286
- Taha, M., Ali, L. S., El-Nablaway, M., Ibrahim, M. M., Badawy, A. M., Farage, A. E., Ibrahim, H. S. A., Zaghloul, R. A., & Hussin, E. (2025). Multifaceted impacts of monosodium glutamate on testicular morphology: Insights into pyroptosis and therapeutic potential of resveratrol. Folia Morphologica, 84(1), 151–166. https://doi.org/10.5603/FM.a2024.0121
- Watkins, J. C., & Young, R. H. (2024). Nonneoplastic disorders of the ovary. In Pathology of the ovary, fallopian tube and peritoneum (pp. 35–58). Springer. https://doi.org/10.1007/978-3-031-42642-6_3
- Wijayasekara, K. N., & Wansapala, J. (2021). Comparison of a flavor enhancer made with locally available ingredients against commercially available monosodium glutamate. International Journal of Gastronomy and Food Science, 23, 100286. https://doi.org/10.1016/j.ijgfs.2020.100286
- Yang, L., Gao, Y., Gong, J., Peng, L., El-Seedi, H. R., Farag, M. A., Zhao, Y., & Xiao, J. (2023). A multifaceted review of monosodium glutamate effects on human health and its natural remedies. Food Materials Research, 3(1). https://doi.org/10.48129/kjs.v3i1.231
- Zhuang, H., Liu, X., Wang, H., Qin, C., Li, Y., Li, W., & Shi, Y. (2021). Diagnosis of early stage Parkinson’s disease on quantitative susceptibility mapping using complex network with one-way ANOVA F-test feature selection. Journal of Mechanics in Medicine and Biology, 21(5), 2140026. https://doi.org/10.1142/S0219519421400264
Copyright (c) 2025 Fathunikmah, Siti Mona Amelia Lestari, Ani Laila, Zahira Abyan Putri Wahyudhi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.