Impact of chronic monosodium glutamate exposure on female reproductive health in an animal model

Fathunikmah Fathunikmah* -  Health Polytechnic of the Ministry of Health, Riau, Pekanbaru, Indonesia
Siti Mona Amelia Lestari -  Faculty of Medicine, University of Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
Ani Laila -  Health Polytechnic of the Ministry of Health, Riau, Pekanbaru, Indonesia
Zahira Abyan Putri Wahyudhi -  Faculty of Teacher Training and Education, University of Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

Monosodium glutamate (MSG) is a widely used food additive; however, its chronic effects on female reproductive health remain unclear. Previous studies have mainly focused on neurotoxic and metabolic outcomes, leaving a gap in understanding its impact on ovarian function. This study investigated the effects of chronic MSG exposure on ovarian structure and follicular development in female mice. An experimental post-test-only control group design was used at the Biomedical Laboratory, Poltekkes Kemenkes Riau, Indonesia, from August to October 2024. Twenty-four female Swiss mice (Mus musculus), aged 8–10 weeks and weighing 25–30 g, were randomly divided into four groups (n = 6 per group). The control group received standard feed, while the treatment groups were administered MSG orally at low (0,25 g/kg body weight/day), medium (1 g/kg body weight/day), and high (4 g/kg body weight/day) doses for eight weeks. Ovarian tissues were examined using histopathology and flow cytometry. Data were analyzed using one-way analysis of variance (ANOVA), post-hoc tests, and correlation analysis. The medium- and high-dose groups showed significant reductions in primary (12,3 ± 2,1; 8,7 ± 1,9) and secondary follicles (7,8 ± 1,5; 4,9 ± 1,2), accompanied by tissue degeneration and germ cell apoptosis. A strong negative correlation was observed between MSG dose and mature follicle count (r = –0,72; p < 0,01). In conclusion, these findings demonstrate dose-dependent ovarian impairment, underscoring the need for dietary risk evaluation and increased public awareness regarding excessive MSG consumption.ChE is not strong enough to assess changes in body composition clinically.

Keywords : Apoptosis, monosodium glutamate, oogenesis, ovarian health, reproductive toxicology

  1. Al-Otaibi, A. M., Emam, N. M., Elabd, H. K., & Esmail, N. I. (2022). Toxicity of monosodium glutamate intake on different tissues induced oxidative stress: A review. Journal of Medical and Life Science, 4(4), 68–81. https://doi.org/10.21608/jmals.2022.264345
  2. Al-Suhaimi, E. A., Khan, F. A., & Homeida, A. M. (2022). Regulation of male and female reproductive function. In Emerging concepts in endocrine structure and functions (pp. 287–347). Springer. https://doi.org/10.1007/978-3-030-93439-7_13
  3. Askar, M. E., Abdel-Maksoud, Y. T., Shaheen, M. A., & Eissa, R. G. (2025). Ameliorating monosodium glutamate-induced testicular dysfunction by modulating steroidogenesis, oxidative stress, inflammation, and apoptosis: Therapeutic role of hesperidin. Biochemical and Biophysical Research Communications, 771, 152032. https://doi.org/10.1016/j.bbrc.2024.152032
  4. Banerjee, A., Mukherjee, S., & Maji, B. K. (2021). Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicology Reports, 8, 938–961. https://doi.org/10.1016/j.toxrep.2021.04.020
  5. Caesar, J., Widjiati, W., Herupradoto, E. B. A., Sukmanadi, M., Madyawati, S. P., Plumeriastuti, H., & Luqman, E. M. (2024). Effect of curcumin nanoparticles on the number of preantral and antral follicles of white rats (Rattus norvegicus) exposed to carbon black. Open Veterinary Journal, 14(12), 3309–3316. https://doi.org/10.5455/OVJ.2024.v14.i12.4
  6. Chairunnisa, N. I. (2022). The effect of green tea extract (Camellia sinensis) on the number of ovarian follicles of female white rat (Rattus norvegicus) exposed to MSG (monosodium glutamate): A literature review. Manganite: Journal of Chemistry and Education, 1(1), 8–14. https://doi.org/10.56709/manganite.v1i1.4
  7. Das, P. K., Mukherjee, J., & Banerjee, D. (2023). Female reproductive physiology. In Textbook of veterinary physiology (pp. 513–568). Springer. https://doi.org/10.1007/978-981-99-7357-6_24
  8. de Vasconcelos, G. L., Maculan, R., da Cunha, E. V., Silva, A. W. B., Batista, A. L. S., Donato, M. A. M., Peixoto, C. A., Silva, J. R. V., & de Souza, J. C. (2020). Antral follicular count and its relationship with ovarian volume, preantral follicle population and survival, oocyte meiotic progression and ultrastructure of in vitro matured bovine cumulus–oocyte complexes. Zygote, 28(6), 495–503. https://doi.org/10.1017/S0967199420000125
  9. Ducreux, B., Ferreux, L., Patrat, C., & Fauque, P. (2023). Overview of gene expression dynamics during human oogenesis/folliculogenesis. International Journal of Molecular Sciences, 25(1), 33. https://doi.org/10.3390/ijms25010033
  10. Fineschi, B. (2022). Selection of competent oocytes by morphological features: Can an artificial intelligence-based model predict oocyte quality? Journal of Assisted Reproduction and Genetics, 39, 1403–1414. https://doi.org/10.1007/s10815-022-02524-9
  11. Hamdalla, H. M., Ahmed, R. R., Galaly, S. R., & Abdul-Hamid, M. (2023). Effects of quercetin on ovarian toxicity induced by dietary monosodium glutamate. Cell and Tissue Biology, 17(5), 543–556. https://doi.org/10.1134/S1990519X23050112
  12. Jozkowiak, M., Piotrowska-Kempisty, H., Kobylarek, D., Gorska, N., Mozdziak, P., Kempisty, B., Rachon, D., & Spaczynski, R. Z. (2022). Endocrine disrupting chemicals in polycystic ovary syndrome: The relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction. Cells, 12(1), 174. https://doi.org/10.3390/cells12010174
  13. Kadir, E. R., Yakub, A. D., Ojulari, L. S., Hussein, A. O., Lawal, I. A., Jaji-Sulaimon, R., & Ajao, M. S. (2024). Cytoarchitectural differences in reproductive organs of some polycystic ovary-like induced animal models. Tissue and Cell, 89, 102456. https://doi.org/10.1016/j.tice.2024.102456
  14. Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon, 9(9), e21055. https://doi.org/10.1016/j.heliyon.2023.e21055
  15. Kayode, O. T., Rotimi, D. E., Kayode, A. A. A., Olaolu, T. D., & Adeyemi, O. S. (2020). Monosodium glutamate (MSG)-induced male reproductive dysfunction: A mini review. Toxics, 8(1), 7. https://doi.org/10.3390/toxics8010007
  16. Kesherwani, R., Bhoumik, S., Kumar, R., & Rizvi, S. I. (2024). Monosodium glutamate even at low dose may affect oxidative stress, inflammation and neurodegeneration in rats. Indian Journal of Clinical Biochemistry, 39(1), 101–109. https://doi.org/10.1007/s12291-023-01127-1
  17. Liu, S., Jia, Y., Meng, S., Luo, Y., Yang, Q., & Pan, Z. (2023). Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review. International Journal of Molecular Sciences, 24(11), 9205. https://doi.org/10.3390/ijms24119205
  18. Moghadam, A. R. E., Moghadam, M. T., Hemadi, M., & Saki, G. (2022). Oocyte quality and aging. JBRA Assisted Reproduction, 26(1), 105–115. https://doi.org/10.5935/1518-0557.20220007
  19. Mondal, M., Sarkar, K., Nath, P. P., & Paul, G. (2018). Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environmental Toxicology, 33(2), 198–208. https://doi.org/10.1002/tox.22507
  20. Nazam, N., Jabir, N. R., Ahmad, I., Alharthy, S. A., Khan, M. S., Ayub, R., & Tabrez, S. (2023). Phenolic acids-mediated regulation of molecular targets in ovarian cancer: Current understanding and future perspectives. Pharmaceuticals, 16(2), 274. https://doi.org/10.3390/ph16020274
  21. Ogunmokunwa, A. E., & Ibitoye, B. O. (2025). Monosodium glutamate (MSG) exposure induced oxidative stress and disrupted testicular hormonal regulation, exacerbating reproductive dysfunction in male Wistar rats. Endocrine and Metabolic Science, 17, 100226. https://doi.org/10.1016/j.endmts.2025.100226
  22. Osawa, Y. (2022). The socio-cultural reception of MSG (monosodium glutamate) in Thailand. In Making food in local and global contexts: Anthropological perspectives (pp. 55–68). Springer. https://doi.org/10.1007/978-3-030-99691-3_4
  23. Othman, S. Al, & Suliman, R. (2020). How pectin play a role in histological changes by monosodium glutamate (MSG) in the ovary of mice? Annals of R.S.C.B., 24(4), 9020–9030. http://annalsofrscb.ro
  24. Reid, K., & Price, B. (2023). Fat, stressed, and sick: MSG, processed food, and America’s health crisis. Rowman & Littlefield. https://rowman.com/ISBN/9781538169601
  25. Rinninella, E., Cintoni, M., Raoul, P., Mora, V., Gasbarrini, A., & Mele, M. C. (2021). Impact of food additive titanium dioxide on gut microbiota composition, microbiota-associated functions, and gut barrier: A systematic review of in vivo animal studies. International Journal of Environmental Research and Public Health, 18(4), 2008. https://doi.org/10.3390/ijerph18042008
  26. Sarmento, E. B., Sassone, L. M., Pinto, K. P., Ferreira, C. M. A., da Fidalgo, T. K. S., Lopes, R. T., Alves, A. T. N. N., Freitas-Fernandes, L. B., Valente, A. P., & Neves, R. H. (2025). Evaluation of a potential bidirectional influence of metabolic syndrome and apical periodontitis: An animal-based study. International Endodontic Journal, 58(5), 517–530. https://doi.org/10.1111/iej.14286
  27. Taha, M., Ali, L. S., El-Nablaway, M., Ibrahim, M. M., Badawy, A. M., Farage, A. E., Ibrahim, H. S. A., Zaghloul, R. A., & Hussin, E. (2025). Multifaceted impacts of monosodium glutamate on testicular morphology: Insights into pyroptosis and therapeutic potential of resveratrol. Folia Morphologica, 84(1), 151–166. https://doi.org/10.5603/FM.a2024.0121
  28. Watkins, J. C., & Young, R. H. (2024). Nonneoplastic disorders of the ovary. In Pathology of the ovary, fallopian tube and peritoneum (pp. 35–58). Springer. https://doi.org/10.1007/978-3-031-42642-6_3
  29. Wijayasekara, K. N., & Wansapala, J. (2021). Comparison of a flavor enhancer made with locally available ingredients against commercially available monosodium glutamate. International Journal of Gastronomy and Food Science, 23, 100286. https://doi.org/10.1016/j.ijgfs.2020.100286
  30. Yang, L., Gao, Y., Gong, J., Peng, L., El-Seedi, H. R., Farag, M. A., Zhao, Y., & Xiao, J. (2023). A multifaceted review of monosodium glutamate effects on human health and its natural remedies. Food Materials Research, 3(1). https://doi.org/10.48129/kjs.v3i1.231
  31. Zhuang, H., Liu, X., Wang, H., Qin, C., Li, Y., Li, W., & Shi, Y. (2021). Diagnosis of early stage Parkinson’s disease on quantitative susceptibility mapping using complex network with one-way ANOVA F-test feature selection. Journal of Mechanics in Medicine and Biology, 21(5), 2140026. https://doi.org/10.1142/S0219519421400264

Open Access Copyright (c) 2025 Fathunikmah, Siti Mona Amelia Lestari, Ani Laila, Zahira Abyan Putri Wahyudhi
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here