Supp. File(s): Copyright Agreement
Pengaruh pemberian ekstrak bekatul beras hitam (Oryza sativa L. indica) terhadap kadar MDA, SOD dan trigliserida pada tikus diabetes mellitus tipe 2
In type 2 diabetes mellitus, the pancreas can produce the hormone insulin, but the body has difficulty using it. The study aimed to prove the effect of black rice bran extract on MDA, SOD, and triglyceride in type 2 Diabetic Mellitus rats. The method is quasi-experimental with a pre-posttest randomized control group design in 2021. The intervention was given for 21 days to 42 male Wistar rats. MDA examination using the TBARs method, SOD examination using a UV-Visible spectrophotometer. Triglyceride examination using a spectrophotometer. Statistical analysis used Paired T-Test or Wilcoxon test and One-Way ANOVA or Kruskal Wallis test. Descriptive research findings show that the intervention of black rice bran extract at a dose of 60 mg/200g reduced MDA in rats to 2,21 mmol/ml and triglycerides to 85,17 mg/dL. In addition, it can increase SOD to 69,67 units/ml. Almost the same as the intervention of metformin 9 mg/200 g body weight. However, statistically, no significant difference exists in the interventions carried out (p> 0,05). The study concluded a decrease in MDA, SOD, and triglyceride in rats, given the black rice bran extract intervention.
Supplement Files
Keywords : Black rice bran extract, MDA, SOD, Triglyceride
- Arifin, W. N., & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using resource equation approach. The Malaysian Journal of Medical Sciences : MJMS, 24(5), 101–105. https://doi.org/10.21315/mjms2017.24.5.11
- Chaiyasut, C., Sivamaruthi, B. S., Pengkumsri, N., Keapai, W., Kesika, P., Saelee, M., Tojing, P., Sirilun, S., Chaiyasut, K., Peerajan, S., & Lailerd, N. (2017). Germinated Thai black rice extract protects experimental diabetic rats from oxidative stress and other diabetes-related consequences. Pharmaceuticals, 10(1), 3. https://doi.org/10.3390/ph10010003
- Chayati, I., Marsono, Y., & Astuti, M. (2019). Purple Corn Anthocyanin Extract Improves Oxidative Stress of Rats Fed High Fat Diet via Superoxide Dismutase Mechanism. International Journal of Science and Research (IJSR), 8(8), 1057–1065. https://doi.org/10.21275/ART2020413
- Cruz, P. L., Moraes-Silva, I. C., Ribeiro, A. A., Machi, J. F., de Melo, M. D. T., dos Santos, F., da Silva, M. B., Strunz, C. M. C., Caldini, E. G., & Irigoyen, M. C. (2021). Nicotinamide attenuates streptozotocin-induced diabetes complications and increases survival rate in rats: role of autonomic nervous system. BMC Endocrine Disorders, 21(1), 1–18. https://doi.org/10.1186/s12902-021-00795-6
- Deepthi, B., Sowjanya, K., Lidiya, B., Bhargavi, R. S., & Babu, P. S. (2018). A modern review of diabetes mellitus: An annihilatory metabolic disorder. Journal of In Silico & In Vitro Pharmacology, 3(1), 1–5. https://doi.org/10.21767/2469-6692.100014
- Fang, J. Y., Lin, C. H., Huang, T. H., & Chuang, S. Y. (2019). In vivo rodent models of type 2 diabetes and their usefulness for evaluating flavonoid bioactivity. Nutrients, 11(3), 530. https://doi.org/10.3390/nu11030530
- Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z. E., & Rahmat, A. (2018). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), 1–13. https://doi.org/10.1186/s13065-018-0382-9
- Gofur, A., Witjoro, A., Ningtiyas, E. W., Setyowati, E., Mukharromah, S. A., Atho’illah, M. F., & Lestari, S. R. (2019). The evaluation of dietary black soybean and purple sweet potato on insulin sensitivity in streptozotocin - Induced diabetic rats. Pharmacognosy Journal, 11(4), 639–646. https://doi.org/10.5530/pj.2019.11.102
- Guo, X. xuan, Wang, Y., Wang, K., Ji, B. ping, & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University: Science B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254
- Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
- Mingyai, S., Kettawan, A., Srikaeo, K., & Singanusong, R. (2017). Physicochemical and antioxidant properties of rice bran oils produced from colored rice using different extraction methods. Journal of Oleo Science, 66(6), 565–572. https://doi.org/10.5650/jos.ess17014
- Nurhidajah, Astuti, R., & Nurrahman. (2019). Black rice potential in HDL and LDL profile in sprague dawley rat with high cholesterol diet. IOP Conference Series: Earth and Environmental Science, 292(1), 012019. https://doi.org/10.1088/1755-1315/292/1/012019
- Okur, M. E., Karantas, I. D., & Siafaka, P. I. (2017). Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharmaceutica Sciencia, 55(1), 61–82. https://doi.org/10.23893/1307-2080.APS.0555
- Ouassou, H., Bouhrim, M., Bencheikh, N., Addi, M., Hano, C., Mekhfi, H., Ziyyat, A., Legssyer, A., Aziz, M., & Bnouham, M. (2021). In vitro antioxidant properties, glucose-diffusion effects, α-amylase inhibitory activity, and antidiabetogenic effects of C. Europaea extracts in experimental animals. Antioxidants, 10(11), 1747. https://doi.org/10.3390/antiox10111747
- Putri, E. P., Lestari, S. R., & Gofur, A. (2020). The combination of black soybean tempeh and purple sweet potato affect reactive oxygen species and malondialdehyde level in streptozotocin-induced diabetic rats. Majalah Obat Tradisional, 25(2), 76. https://doi.org/10.22146/mot.51544
- Sari, N., & Wahyuni, A. S. (2018). Effect of black rice bran extract (Black rice bran) to decrease decrease of glucose level in diabetic rats. Pharmacon: Jurnal Farmasi Indonesia, 14(1), 8–13. https://doi.org/10.23917/pharmacon.v14i1.539
- Sivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2020). The influence of supplementation of anthocyanins on obesity-associated comorbidities: A concise review. Foods, 9(6), 1–25. https://doi.org/10.3390/foods9060687
- Tan, J., Li, Y., Hou, D. X., & Wu, S. (2019). The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants, 8(10), 1–16. https://doi.org/10.3390/antiox8100479
- Tantipaiboonwong, P., Pintha, K., Chaiwangyen, W., Chewonarin, T., Pangjit, K., Chumphukam, O., Kangwan, N., & Suttajit, M. (2017). Anti-hyperglycaemic and anti-hyperlipidaemic effects of black and red rice in streptozotocin-induced diabetic rats. ScienceAsia, 43(5), 281–288. https://doi.org/10.2306/scienceasia1513-1874.2017.43.281
- Utama, L. J., Suryana, S., & Sembiring, A. C. (2021). Effects of mixture powder of black rice (Oryza sativa L indica), red beans (Phaseolus vulgaris L), and moringa leaves (Moringa oleifera L) on blood glucose concentration in hyperglycemic Rats. Jurnal Gizi Indonesia, 9(2), 136–143. https://doi.org/10.14710/jgi.9.2.136-143
- Verma, M. K., Jaiswal, A., Sharma, P., Kumar, P., & Singh, A. N. (2019). Oxidative stress and biomarker of TNF-α, MDA and FRAP in hypertension. Journal of Medicine and Life, 12(3), 253–259. https://doi.org/10.25122/jml-2019-0031
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.