Sorghum flour's effect on improving plasma lipid profile and atherogenic index in diabetic rats

Dewi Setyowati -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
Aniq Nailil Muna -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
Anis Septiyani -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
Nurmasari Widyastuti* -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
Ani Margawati -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
Martha Ardiaria -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia
A. Fahmy Arif Tsani -  Departemen Ilmu Gizi Fakultas Kedokteran Universitas Diponegoro, Semarang, Indonesia

Supp. File(s): common.other common.other common.other common.other common.other common.other common.other

Dyslipidemia increases the risk of coronary heart disease in people with diabetes. Increased consumption of foods substantial in fiber and antioxidants, such as sorghum, can help people with diabetes manage their lipid profiles and improve insulin sensitivity. The study aimed to evaluate how sorghum flour affected diabetic rats' plasma atherosclerosis index (IAP) score and blood lipid profile. A randomized control design was used for the research's experimental methodology. In 2019, the study was carried out at P3G Laboratory UGM. 18 male Wistar rats served as the subjects and were separated into three groups: treatment (P) (5 g/mouse/day for 28 days), positive control (K+), and negative control of sorghum flour (K-). By administering nicotinamide and streptozotocin (STZ), the DM rat model was created (NA). The GPO-PAP method was used to measure TG levels. Total cholesterol, low-density lipoprotein, and high-density lipoprotein were all measured using CHOD-PAP. The log (TG/HDL) ratio (IAP) calculated the plasma atherosclerosis index. Paired T-tests, Wilcoxon, Anova, and Kruskal-Wallis, were used to evaluate the data. According to the findings, there were significant changes in the groups' baseline and post-intervention levels of total cholesterol (p=0,003), triglycerides (p=0,002), low-density lipoprotein (p=0,003), high-density lipoprotein (p=0,002), and IAP (p=0,001). In conclusion, feeding DM rats sorghum flour altered their blood lipid levels and plasma atherosclerosis index (IAP). Their LDL, triglycerides, and total cholesterol can all be reduced with a daily intake of 5 g per person.

Supplement Files

Keywords : Diabetes Mellitus, Lipid profile, Sorghum flour

  1. Abd El-Twab, S. M., Mohamed, H. M., & Mahmoud, A. M. (2016). Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary–gonadal axis. Canadian Journal of Physiology and Pharmacology, 94(6), 651–661. https://doi.org/10.1139/cjpp-2015-0503
  2. Amanda, E., Juniarto, A. Z., Afifah, D. N., Muniroh, M., Al-Baarri, A. N., & Fitranti, D. Y. (2021). Perbaikan kadar trigliserida dan Hs-CRP pada tikus Wistar Diabetes Mellitus tipe 2 dengan biskuit biji bunga matahari. AcTion: Aceh Nutrition Journal, 6(2), 189–198. https://doi.org/10.30867/action.v6i2.560
  3. Ananda, K., Kumarappan, C. T., Christudas, S., & Kalaichelvan, V. K. (2012). Effect of Biophytum sensitivum on streptozotocin and nicotinamide-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine, 2(1), 31–35. https://doi.org/10.1016/S2221-1691(11)60185-8
  4. Balikai, F., Deshpande, N., Javali, S., Shetty, D., Benni, J., Shindhe, V., Jaalam, K., & Kapoor, N. (2020). The relationship between serum triglyceride level and heart rate variability in type 2 diabetes mellitus patients of North Karnataka. Journal of Diabetology, 11(3), 191. https://doi.org/10.4103/jod.jod_7_20
  5. Basiak-Rasała, A., Różańska, D., & Zatońska, K. (2019). Food groups in dietary prevention of type 2 diabetes. Roczniki Panstwowego Zakladu Higieny, 70(4), 347–357. https://doi.org/10.32394/rpzh.2019.0086
  6. E.Jyothsna, Hymavathi, D. T. V., & Kumar, D. G. K. (2015). Effect of sorghum based resistant starch rich product supplementation on lipid profile of healthy individuals. IOSR Journal of Nursing and Health Science (IOSR-JNHS), 4(3), 50–54. https://doi.org/10.9790/1959-04335054
  7. Firdaus, F., Rimbawan, R., Marliyati, S. A., & Roosita, K. (2016). Model Tikus Diabetes Yang Diinduksi Streptozotocin-Sukrosa Untuk Pendekatan Penelitian Diabetes Melitus Gestasional. JURNAL MKMI, 12(1), 29–34. https://doi.org/https://doi.org/10.30597/mkmi.v12i1.550
  8. Fukaya, M., Tamura, Y., Chiba, Y., Tanioka, T., Mao, J., Inoue, Y., Yamada, M., Waeber, C., Ido-Kitamura, Y., Kitamura, T., & Kaneki, M. (2014). Protective effects of a nicotinamide derivate, isonicotinamide, against streptozotocin-induced β-cell and diabetes in mice. Biochemical and Biophysical Research Communications, 442(0), 92–98. https://doi.org/10.1016/j.bbrc.2013.11.024.Protective
  9. Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2
  10. Gropper, S. S., & Smith, J. L. (2012). Advanced nutrition and human metabolism. Cengage Learning.
  11. Hamid, A., Ilyas, M., & Kalsoom, S. (2017). Effect of Wheat and Corn Bran and Barley and Sorghum β-Glucan Extracts on the Plasma Cholesterol Level of Dietary-Induced Hypercholesterolemic Rats. Pakistan Journal of Zoology, 49(5). https://doi.org/10.17582/journal.pjz/2017.49.5.1631.1637
  12. International Diabetes Federation. (2021). IDF Diabetes Atlas. In www.diabetesatlas.org (10th Editi). https://doi.org/10.1242/jeb.64.3.665
  13. Iqbal, J., Al Qarni, A., Hawwari, A., Alghanem, A. F., & Ahmed, G. (2017). Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Current Diabetes Reviews, 14(5), 427–433. https://doi.org/10.2174/1573399813666170705161039
  14. Isdamayani, L., & Panunggal, B. (2015). Kandungan Flavonoid, Total Fenol, Dan Antioksidan Snack Barsorgum Sebagai Alternatif Makanan Selingan Penderita Diabetes Mellitus Tipe 2. Journal of Nutrition College, 4(2), 342–349. https://doi.org/https://doi.org/10.14710/jnc.v4i4.10108
  15. Karunia, S., Wati, S., Putra, I. B., & Jusuf, N. K. (2021). Relationship between plasma atherogenic index and xanthelasma palpebrarum. Bali Medical Jurnal, 10(3), 1010–1014. https://doi.org/10.15562/bmj.v10i3.2813
  16. Kementerian Kesehatan Republik Indonesia. (2020). INFODATIN : Diabetes Melitus. In Pusat Data dan Informasi Kementrian Kesehatan RI.
  17. Kim, J., & Park, Y. (2012). Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutrition and Metabolism, 9(106), 1–7. https://doi.org/10.1186/1743-7075-9-106
  18. Lee, R. D. (2010). Energy Balance and Body Weight. In S. L. R. Marcia Nelms, Kathryn P. Sucher, Karen Lacey (Ed.), Nutrition Therapy and Pathophysiology. (2nd editio, pp. 245–248). Cengage Learning.
  19. Mahdi, C., Citrawati, P., & Hendrawan, V. F. (2020). The Effect of Rice Bran on Triglyceride Levels and Histopatologic Aorta in Rat (Rattus norvegicus) of High Cholesterol Dietary Model. IOP Conference Series: Materials Science and Engineering, 833(012022), 1–9. https://doi.org/10.1088/1757-899X/833/1/012022
  20. Monikasari, M., Widyastiti, N. S., Mahati, E., Syauqy, A., & Al-Baarri, A. N. (2023). Pengaruh pemberian ekstrak bekatul beras hitam (Oryza sativa L. indica) terhadap kadar MDA, SOD dan trigliserida pada tikus diabetes mellitus tipe 2. AcTion: Aceh Nutrition Journal, 8(1), 129–138. https://doi.org/10.30867/action.v8i1.731
  21. Nuraini, I., Sulchan, M., & Dieny, F. (2017). Resitensi Insulin pada Remaja Stunted Obesity Usia 15-18 Tahun di Kota Semarang. Journal of Nutrition College, 6(2), 164–171. https://doi.org/10.14710/jnc.v6i2.16906
  22. Ortíz Cruz, R. A., Cárdenas López, J. L., González Aguilar, G. A., Astiazarán García, H., Gorinstein, S., Canett Romero, R., & Robles Sánchez, M. (2015). Influence of Sorghum Kafirin on Serum Lipid Profile and Antioxidant Activity in Hyperlipidemic Rats ( In Vitro and In Vivo Studies). BioMed Research International, 2015, 1–8. https://doi.org/10.1155/2015/164725
  23. Park, J. H., Lee, S. H., Chung, I.-M., & Park, Y. (2012). Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutrition Research and Practice, 6(4), 322. https://doi.org/10.4162/nrp.2012.6.4.322
  24. Pinakesty, A., & Azizah, R. N. (2020). Hubungan Profil Lipid dengan Progresivitas Diabetes Melitus Tipe 2. JIMKI: Jurnal Ilmiah Mahasiswa Kedokteran Indonesia, 8(2), 66–72. https://doi.org/10.53366/jimki.v8i2.131
  25. Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Canadian Journal of Diabetes, 42, S10–S15. https://doi.org/10.1016/j.jcjd.2017.10.003
  26. Sa’adah, N. N., Purwani, K. I., Nurhayati, A. P. D., & Ashuri, N. M. (2017). Analysis of lipid profile and atherogenic index in hyperlipidemic rat (Rattus norvegicus Berkenhout, 1769) that given the methanolic extract of Parijoto (Medinilla speciosa). AIP Conference Proceedings, 1854(020031), 1–8. https://doi.org/10.1063/1.4985422
  27. Salimi, Y. K. (2012). Peranan Ekstrak dan Tepung Sorgum (Sorghum bicolor L.) dalam Penghambatan Kanker secara in vitro dan in vivo pada Mencit BALB/c. Institut Pertanian Bogor.
  28. Savych, A., & Marchyshyn., S. (2017). Investigation of pharmacological activity the new antidiabetic plant gathering in streptozotocin-nicotinamide-induced diabetes in the rats. The Pharma Innovation Journal, 6(3), 175–177.
  29. Setyawati, T. (2014). Peroxisome Proliferator Activated Receptor- γ (Ppar- γ) coactivator 1- α (PGC-1 α) Pada Diabetes Melitus Tipe 2 (DMT2) dan perannya dalam fungsi mitokondria. Jurnal Ilmiah Kedokteran Medika Tadulako, 1(1), 54–62.
  30. Shen, R.-L., Zhang, W.-L., Dong, J.-L., Ren, G.-X., & Chen, M. (2015). Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food and Agricultural Immunology, 26(1), 120–130. https://doi.org/10.1080/09540105.2013.876976
  31. Velázquez-López, L., Muñoz-Torres, A. V., García-Peña, C., López-Alarcón, M., Islas-Andrade, S., & Escobedo-de la Peña, J. (2016). Fiber in Diet Is Associated with Improvement of Glycated Hemoglobin and Lipid Profile in Mexican Patients with Type 2 Diabetes. Journal of Diabetes Research, 2016, 1–9. https://doi.org/10.1155/2016/2980406
  32. Wresdiyati, T., Hartanta, A. B., & Astawan, M. (2012). Tepung Rumput Laut (Eucheuma Cottonii) Menaikkan Level Superoksida Dismutase (Sod) Ginjal Tikus Hiperkolesterolemia. Jurnal Veteriner, 12(2), 125–135.
  33. Yustina, I., Nurhasanah, A., & Antarlina, S. S. (2021). Karakteristik muffin sorghum (Sorghum bicolor) varietas KD 4 dengan perlakuan perendaman biji dan konsentrasi tepung sorgum. Jurnal Penelitian Pascapanen Pertanian, 18(6), 37–44. https://doi.org/10.21082/jpasca.v18n1.2021.37-44

Open Access Copyright (c) 2023 Dewi Setyowati, Aniq Nailil Muna, Anis Septiyani, Nurmasari Widyastuti, Ani Margawati, Martha Ardiaria, A. Fahmy Arif Tsani
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: [email protected]

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here