Phytochemical evaluation and antidiabetic potential (In silico) of corn silk (Zea mays L.) and jasmine (Jasminum sambac)
Diabetes mellitus is a significant global health challenge, necessitating the exploration of novel therapeutics from natural sources for its treatment. This study aimed to identify the bioactive compounds in a combinatorial methanolic extract of corn silk (Zea mays L.) and jasmine flowers (Jasminum sambac) and predict their antidiabetic potential. The extract was analyzed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The identified compounds were evaluated in silico via molecular docking simulations against key antidiabetic protein targets: Glucagon-Like Peptide 1 (GLP-1), Insulin-like Growth Factor 1 (IGF-1), Glucose Transporter 4 (GLUT4), alpha-glucosidase, and superoxide dismutase (SOD). The analysis focused on the binding energy (ΔG). A total of 44 metabolites were identified in this study. Molecular docking results indicated that rothindin exhibited the highest binding affinity for GLUT4, with a binding energy of -9.9 kcal/mol. Rothindin and Chlorogenic Acid also showed significant potential as modulators of GLUT4 and α-glucosidase, respectively. In conclusion, the combined extract contains bioactive compounds, particularly roxindin and chlorogenic acid, which demonstrate significant in silico potential as antidiabetic agents.
Keywords : Antidiabetic, corn silk, jasmine flower, in silico, molecular docking
- Abiola, J. O., Oluyemi, A. A., Idowu, O. T., Oyinloye, O. M., Ubah, C. S., Owolabi, O. V., Somade, O. T., Onikanni, S. A., Ajiboye, B. O., Osunsanmi, F. O., Nash, O., Omotuyi, O. I., & Oyinloye, B. E. (2024). Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals, 17(6), Article 6. https://doi.org/10.3390/ph17060736
- Abioye, R. O., Nwamba, O. C., Okagu, O. D., & Udenigwe, C. C. (2023). Synergistic Effect of Acarbose–Chlorogenic Acid on α-Glucosidase Inhibition: Kinetics and Interaction Studies Reveal Mixed-Type Inhibition and Denaturant Effect of Chlorogenic Acid. ACS Food Science & Technology, 3(7), 1255–1268. https://doi.org/10.1021/acsfoodscitech.3c00146
- Alhujaily, M., Dhifi, W., & Mnif, W. (2022). An Overview of the Potential of Medicinal Plants Used in the Development of Nutraceuticals for the Management of Diabetes Mellitus: Proposed Biological Mechanisms. Processes, 10(10), Article 10. https://doi.org/10.3390/pr10102044
- Ansari, P., Choudhury, S. T., Seidel, V., Rahman, A. B., Aziz, Md. A., Richi, A. E., Rahman, A., Jafrin, U. H., Hannan, J. M. A., & Abdel-Wahab, Y. H. A. (2022). Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life, 12(8), 1146. https://doi.org/10.3390/life12081146
- Antar, S. A., Ashour, N. A., Sharaky, M., Khattab, M., Ashour, N. A., Zaid, R. T., Roh, E. J., Elkamhawy, A., & Al-Karmalawy, A. A. (2023). Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomedicine & Pharmacotherapy, 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734
- Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
- Bouyahya, A., Bakrim, S., Aboulaghras, S., El Kadri, K., Aanniz, T., Khalid, A., Abdalla, A. N., Abdallah, A. A., Ardianto, C., Ming, L. C., & El Omari, N. (2024). Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomedicine & Pharmacotherapy, 174, 116432. https://doi.org/10.1016/j.biopha.2024.116432
- Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869–888. https://doi.org/10.1039/c9np00011a
- Chaudhary, R. K., Karoli, S. S., Dwivedi, P. S. R., & Bhandari, R. (2022). Anti-diabetic potential of Corn silk (Stigma maydis): An in-silico approach. Journal of Diabetes and Metabolic Disorders, 21(1), 445–454. https://doi.org/10.1007/s40200-022-00992-7
- Chen, G., Mostafa, S., Lu, Z., Du, R., Cui, J., Wang, Y., Liao, Q., Lu, J., Mao, X., Chang, B., Gan, Q., Wang, L., Jia, Z., Yang, X., Zhu, Y., Yan, J., & Jin, B. (2023). The Jasmine (Jasminum Sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. Genomics, Proteomics & Bioinformatics, 21(1), 127–149. https://doi.org/10.1016/j.gpb.2022.12.005
- Dini, S., Zakeri, M., Ebrahimpour, S., Dehghanian, F., & Esmaeili, A. (2021). Quercetin‑conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats. Scientific Reports, 11(1), 8618. https://doi.org/10.1038/s41598-021-87687-w
- Dong, Q., Hu, N., Yue, H., & Wang, H. (2021). Inhibitory Activity and Mechanism Investigation of Hypericin as a Novel α-Glucosidase Inhibitor. Molecules, 26(15), 4566. https://doi.org/10.3390/molecules26154566
- FooDB. (2019). Showing Compound Rothindin (FDB015525)—FooDB. https://foodb.ca/compounds/FDB015525
- Fraser, K., Lane, G. A., Otter, D. E., Harrison, S. J., Quek, S.-Y., Hemar, Y., & Rasmussen, S. (2014). Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chemistry, 151, 394–403. https://doi.org/10.1016/j.foodchem.2013.11.054
- Haslina, H., & Eva, M. (2017). Extract Corn Silk with Variation of Solvents on Yield, Total Phenolics, Total Flavonoids and Antioxidant Activity. Indonesian Food and Nutrition Progress, 14(1), Article 1. https://doi.org/10.22146/ifnp.24280
- Herrera-Mayorga, V., Guerrero-Sánchez, J. A., Méndez-Álvarez, D., Paredes-Sánchez, F. A., Rodríguez-Duran, L. V., Niño-García, N., Paz-González, A. D., & Rivera, G. (2022). Insecticidal Activity of Organic Extracts of Solidago graminifolia and Its Main Metabolites (Quercetin and Chlorogenic Acid) against Spodoptera frugiperda: An In Vitro and In Silico Approach. Molecules, 27(10), 3325. https://doi.org/10.3390/molecules27103325
- Hossain, Md. J., Al‐Mamun, Md., & Islam, Md. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3), e2004. https://doi.org/10.1002/hsr2.2004
- Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738
- Hou, W., Li, S., Li, S., Shi, D., & Liu, C. (2019). Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. Journal of Separation Science, 42(6), 1133–1143. https://doi.org/10.1002/jssc.201800986
- Jahandideh, F., & Wu, J. (2022). A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Science and Human Wellness, 11(6), 1441–1454. https://doi.org/10.1016/j.fshw.2022.06.001
- Jiang, H., Wang, Y., Li, J., Guo, H., Wang, L., Li, J., Wang, X., & Zhang, Y. (2025). Inhibitory mechanism of chlorogenic acid on α-glucosidase and evaluation of its glucose consumption in HepG2 cells. Journal of Molecular Structure, 1331, 141607. https://doi.org/10.1016/j.molstruc.2025.141607
- Jin, S., Chang, C., Zhang, L., Liu, Y., Huang, X., & Chen, Z. (2015). Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice. PLOS ONE, 10(4), e0120842. https://doi.org/10.1371/journal.pone.0120842
- Kemenkes Republik Indonesia. (2019). Basic Health Research Results in 2018. Kementrian Kesehatan Republik Indonesia.
- Khushe, K. J., Wazed, Md. A., Islam, Md. R., Awal, Md. S., & Mozumder, N. H. M. R. (2024). Extraction and Evaluation of Bioactive Compounds from Immature and Mature Corn Silk. Journal of Food Quality, 2024(1), 9552151. https://doi.org/10.1155/2024/9552151
- Mohamed, Y., S. N., Abas, F., Jaafar, A. H., Azizan, A., Zolkeflee, N. K. Z., & Abd Ghafar, S. Z. (2021). Antioxidant and α-glucosidase inhibitory activities of eight neglected fruit extracts and UHPLC-MS/MS profile of the active extracts. Food Science and Biotechnology, 30(2), 195–208. https://doi.org/10.1007/s10068-020-00856-x
- Mutiah, R., Annisa, R., & Zahiro, S. R. (2024). Molecular Insights into Breast Cancer Treatment: An Integrated Approach of Network Pharmacology and Component Analysis for Lansium parasiticum Bark Extract. Indonesian Journal of Cancer Chemoprevention, 15(2), Article 2. https://doi.org/10.14499/indonesianjcanchemoprev15iss2pp96-107
- Nabil-Adam, A., Ashour, M. L., Tamer, T. M., Shreadah, M. A., & Hassan, M. A. (2023). Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts, 13(2), 443. https://doi.org/10.3390/catal13020443
- Nawaz, H., Muzaffar, S., Aslam, M., Ahmad, S., Nawaz, H., Muzaffar, S., Aslam, M., & Ahmad, S. (2018). Phytochemical Composition: Antioxidant Potential and Biological Activities of Corn. In Corn—Production and Human Health in Changing Climate. IntechOpen. https://doi.org/10.5772/intechopen.79648
- Nguyen, V., Taine, E. G., Meng, D., Cui, T., & Tan, W. (2024). Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients, 16(7), 924. https://doi.org/10.3390/nu16070924
- Nurmamulyosari, L. D., Hariri, M. R., Gofur, A., Listyorini, D., Susanto, H., & Handaya, A. Y. (2015). Effect of Aloe vera Extract to The Insulin-Like Growth Factor-1 (IGF-1) Levels from Visceral Fat Tissue In Rattus norvegicus Wistar Diabetes Mellitus. KnE Life Sciences, 2(1), 174–179. https://doi.org/10.18502/kls.v2i1.138
- Ola, M. S., Aleisa, A. M., Al-Rejaie, S. S., Abuohashish, H. M., Parmar, M. Y., Alhomida, A. S., & Ahmed, M. M. (2014). Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(7), 1003–1008. https://doi.org/10.1007/s10072-014-1628-5
- Patel, K., Sen, D. B., Sen, A. K., & Maheshwari, R. A. (2023). An Attention-Grabbing Review on Stigma Maydis (Corn Silk). Journal of Natural Remedies, 23(1), 35–46. https://doi.org/10.18311/jnr/2023/31289
- Rahman, N. A., & Wan Rosli, W. I. (2014). Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University - Science, 26(2), 119–127. https://doi.org/10.1016/j.jksus.2013.11.002
- Raihan, A., Illahi, A. K., Rokhimah, S., Elisa, T. P. P., & Maliza, R. (2023). Identification of Bioactive Solutions of Corn Silk (Zea mays L.) Extract and Biological Activity Test By Bioinformatics. Jurnal Biologi Tropis, 23(1), 245–250. https://doi.org/10.29303/jbt.v23i1.5846
- Ren, S.-C., Liu, Z.-L., & Ding, X.-L. (2009). Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). Journal of Medicinal Plants Research, 3(12), 1009–1015. https://doi.org/10.5897/JMPR.9000839
- Shankaranarayana, S. H., Gajanana, V. K., Chavan, M., Chavannavar, S. V., & Doddanagappa, S. (2024). Bioactive Potential of Baby Corn Silk: In-Vitro Evaluation of Antioxidant, Antimicrobial, Anti-diabetic, and Anti-gout Activities. Waste and Biomass Valorization, 15(7), 4353–4372. https://doi.org/10.1007/s12649-024-02443-1
- Sonia, H., Chelleng, N., Afzal, N. U., Manna, P., Puzari, M., Chetia, P., & Tamuly, C. (2025). Anti-diabetic and anti-urease inhibition potential of Amomum dealbatum Roxb. Seeds through a bioassay-guided approach. Natural Product Research, 39(10), 2978–2983. https://doi.org/10.1080/14786419.2023.2301679
- Wang, K.-J., & Zhao, J.-L. (2019). Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 510–517. https://doi.org/10.1016/j.biopha.2018.11.126
- Wang, T., Wang, J., Hu, X., Huang, X.-J., & Chen, G.-X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76–98. https://doi.org/10.4331/wjbc.v11.i3.76
- Wang, Y., Mao, J., Zhang, M., Liu, L., Zhu, Y., Gu, M., Zhang, J., Bu, H., Sun, Y., Sun, J., Ma, Y., Guo, L., Zheng, Y., & Liu, Q. (2024). An Umbrella Insight into the Phytochemistry Features and Biological Activities of Corn Silk: A Narrative Review. Molecules, 29(4), Article 4. https://doi.org/10.3390/molecules29040891
- Wu, L.-C., Lin, C.-L., Peng, C.-C., Huang, T.-L., Tsai, T.-H., Kuan, Y.-E., & Chung, Y.-C. (2021). Development from Jasminum sambac Flower Extracts of Products with Floral Fragrance and Multiple Physiological Activities. Evidence-Based Complementary and Alternative Medicine, 2021, 1–12. https://doi.org/10.1155/2021/7657628
- Xing, X., Chun, C., Qiang, H., Xiong, F., & Rui-Hai, L. (2021). Investigation into the mechanisms of quercetin-3-O -glucuronide inhibiting α-glucosidase activity and non-enzymatic glycation by spectroscopy and molecular docking. Food & Function, 12(17), 7825–7835. https://doi.org/10.1039/D1FO01042E
- Zhang, Y., Xiong, Y., An, H., Li, J., Li, Q., Huang, J., & Liu, Z. (2022). Analysis of Volatile Components of Jasmine and Jasmine Tea during Scenting Process. Molecules, 27(2), 479. https://doi.org/10.3390/molecules27020479
- Zheng, Z., Zong, Y., Ma, Y., Tian, Y., Pang, Y., Zhang, C., & Gao, J. (2024). Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 9(1), 234. https://doi.org/10.1038/s41392-024-01931-z
Copyright (c) 2025 Bohari Bohari, Rimbawan Rimbawan, Zuraidah Nasution, Ekowati Handharyani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.