Phytochemical evaluation and antidiabetic potential (In silico) of corn silk (Zea mays L.) and jasmine (Jasminum sambac)

Bohari Bohari -  Postgraduate in Nutrition Science, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia
Rimbawan Rimbawan* -  Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia
Zuraidah Nasution -  Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia
Ekowati Handharyani -  Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
Diabetes mellitus is a significant global health challenge, necessitating the exploration of novel therapeutics from natural sources for its treatment. This study aimed to identify the bioactive compounds in a combinatorial methanolic extract of corn silk (Zea mays L.) and jasmine flowers (Jasminum sambac) and predict their antidiabetic potential. The extract was analyzed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The identified compounds were evaluated in silico via molecular docking simulations against key antidiabetic protein targets: Glucagon-Like Peptide 1 (GLP-1), Insulin-like Growth Factor 1 (IGF-1), Glucose Transporter 4 (GLUT4), alpha-glucosidase, and superoxide dismutase (SOD). The analysis focused on the binding energy (ΔG). A total of 44 metabolites were identified in this study. Molecular docking results indicated that rothindin exhibited the highest binding affinity for GLUT4, with a binding energy of -9.9 kcal/mol. Rothindin and Chlorogenic Acid also showed significant potential as modulators of GLUT4 and α-glucosidase, respectively. In conclusion, the combined extract contains bioactive compounds, particularly roxindin and chlorogenic acid, which demonstrate significant in silico potential as antidiabetic agents.

Keywords : Antidiabetic, corn silk, jasmine flower, in silico, molecular docking

  1. Abiola, J. O., Oluyemi, A. A., Idowu, O. T., Oyinloye, O. M., Ubah, C. S., Owolabi, O. V., Somade, O. T., Onikanni, S. A., Ajiboye, B. O., Osunsanmi, F. O., Nash, O., Omotuyi, O. I., & Oyinloye, B. E. (2024). Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals, 17(6), Article 6. https://doi.org/10.3390/ph17060736
  2. Abioye, R. O., Nwamba, O. C., Okagu, O. D., & Udenigwe, C. C. (2023). Synergistic Effect of Acarbose–Chlorogenic Acid on α-Glucosidase Inhibition: Kinetics and Interaction Studies Reveal Mixed-Type Inhibition and Denaturant Effect of Chlorogenic Acid. ACS Food Science & Technology, 3(7), 1255–1268. https://doi.org/10.1021/acsfoodscitech.3c00146
  3. Alhujaily, M., Dhifi, W., & Mnif, W. (2022). An Overview of the Potential of Medicinal Plants Used in the Development of Nutraceuticals for the Management of Diabetes Mellitus: Proposed Biological Mechanisms. Processes, 10(10), Article 10. https://doi.org/10.3390/pr10102044
  4. Ansari, P., Choudhury, S. T., Seidel, V., Rahman, A. B., Aziz, Md. A., Richi, A. E., Rahman, A., Jafrin, U. H., Hannan, J. M. A., & Abdel-Wahab, Y. H. A. (2022). Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life, 12(8), 1146. https://doi.org/10.3390/life12081146
  5. Antar, S. A., Ashour, N. A., Sharaky, M., Khattab, M., Ashour, N. A., Zaid, R. T., Roh, E. J., Elkamhawy, A., & Al-Karmalawy, A. A. (2023). Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomedicine & Pharmacotherapy, 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734
  6. Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
  7. Bouyahya, A., Bakrim, S., Aboulaghras, S., El Kadri, K., Aanniz, T., Khalid, A., Abdalla, A. N., Abdallah, A. A., Ardianto, C., Ming, L. C., & El Omari, N. (2024). Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomedicine & Pharmacotherapy, 174, 116432. https://doi.org/10.1016/j.biopha.2024.116432
  8. Caesar, L. K., & Cech, N. B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Natural Product Reports, 36(6), 869–888. https://doi.org/10.1039/c9np00011a
  9. Chaudhary, R. K., Karoli, S. S., Dwivedi, P. S. R., & Bhandari, R. (2022). Anti-diabetic potential of Corn silk (Stigma maydis): An in-silico approach. Journal of Diabetes and Metabolic Disorders, 21(1), 445–454. https://doi.org/10.1007/s40200-022-00992-7
  10. Chen, G., Mostafa, S., Lu, Z., Du, R., Cui, J., Wang, Y., Liao, Q., Lu, J., Mao, X., Chang, B., Gan, Q., Wang, L., Jia, Z., Yang, X., Zhu, Y., Yan, J., & Jin, B. (2023). The Jasmine (Jasminum Sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. Genomics, Proteomics & Bioinformatics, 21(1), 127–149. https://doi.org/10.1016/j.gpb.2022.12.005
  11. Dini, S., Zakeri, M., Ebrahimpour, S., Dehghanian, F., & Esmaeili, A. (2021). Quercetin‑conjugated superparamagnetic iron oxide nanoparticles modulate glucose metabolism-related genes and miR-29 family in the hippocampus of diabetic rats. Scientific Reports, 11(1), 8618. https://doi.org/10.1038/s41598-021-87687-w
  12. Dong, Q., Hu, N., Yue, H., & Wang, H. (2021). Inhibitory Activity and Mechanism Investigation of Hypericin as a Novel α-Glucosidase Inhibitor. Molecules, 26(15), 4566. https://doi.org/10.3390/molecules26154566
  13. FooDB. (2019). Showing Compound Rothindin (FDB015525)—FooDB. https://foodb.ca/compounds/FDB015525
  14. Fraser, K., Lane, G. A., Otter, D. E., Harrison, S. J., Quek, S.-Y., Hemar, Y., & Rasmussen, S. (2014). Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chemistry, 151, 394–403. https://doi.org/10.1016/j.foodchem.2013.11.054
  15. Haslina, H., & Eva, M. (2017). Extract Corn Silk with Variation of Solvents on Yield, Total Phenolics, Total Flavonoids and Antioxidant Activity. Indonesian Food and Nutrition Progress, 14(1), Article 1. https://doi.org/10.22146/ifnp.24280
  16. Herrera-Mayorga, V., Guerrero-Sánchez, J. A., Méndez-Álvarez, D., Paredes-Sánchez, F. A., Rodríguez-Duran, L. V., Niño-García, N., Paz-González, A. D., & Rivera, G. (2022). Insecticidal Activity of Organic Extracts of Solidago graminifolia and Its Main Metabolites (Quercetin and Chlorogenic Acid) against Spodoptera frugiperda: An In Vitro and In Silico Approach. Molecules, 27(10), 3325. https://doi.org/10.3390/molecules27103325
  17. Hossain, Md. J., Al‐Mamun, Md., & Islam, Md. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3), e2004. https://doi.org/10.1002/hsr2.2004
  18. Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738
  19. Hou, W., Li, S., Li, S., Shi, D., & Liu, C. (2019). Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. Journal of Separation Science, 42(6), 1133–1143. https://doi.org/10.1002/jssc.201800986
  20. Jahandideh, F., & Wu, J. (2022). A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Science and Human Wellness, 11(6), 1441–1454. https://doi.org/10.1016/j.fshw.2022.06.001
  21. Jiang, H., Wang, Y., Li, J., Guo, H., Wang, L., Li, J., Wang, X., & Zhang, Y. (2025). Inhibitory mechanism of chlorogenic acid on α-glucosidase and evaluation of its glucose consumption in HepG2 cells. Journal of Molecular Structure, 1331, 141607. https://doi.org/10.1016/j.molstruc.2025.141607
  22. Jin, S., Chang, C., Zhang, L., Liu, Y., Huang, X., & Chen, Z. (2015). Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice. PLOS ONE, 10(4), e0120842. https://doi.org/10.1371/journal.pone.0120842
  23. Kemenkes Republik Indonesia. (2019). Basic Health Research Results in 2018. Kementrian Kesehatan Republik Indonesia.
  24. Khushe, K. J., Wazed, Md. A., Islam, Md. R., Awal, Md. S., & Mozumder, N. H. M. R. (2024). Extraction and Evaluation of Bioactive Compounds from Immature and Mature Corn Silk. Journal of Food Quality, 2024(1), 9552151. https://doi.org/10.1155/2024/9552151
  25. Mohamed, Y., S. N., Abas, F., Jaafar, A. H., Azizan, A., Zolkeflee, N. K. Z., & Abd Ghafar, S. Z. (2021). Antioxidant and α-glucosidase inhibitory activities of eight neglected fruit extracts and UHPLC-MS/MS profile of the active extracts. Food Science and Biotechnology, 30(2), 195–208. https://doi.org/10.1007/s10068-020-00856-x
  26. Mutiah, R., Annisa, R., & Zahiro, S. R. (2024). Molecular Insights into Breast Cancer Treatment: An Integrated Approach of Network Pharmacology and Component Analysis for Lansium parasiticum Bark Extract. Indonesian Journal of Cancer Chemoprevention, 15(2), Article 2. https://doi.org/10.14499/indonesianjcanchemoprev15iss2pp96-107
  27. Nabil-Adam, A., Ashour, M. L., Tamer, T. M., Shreadah, M. A., & Hassan, M. A. (2023). Interaction of Jania rubens Polyphenolic Extract as an Antidiabetic Agent with α-Amylase, Lipase, and Trypsin: In Vitro Evaluations and In Silico Studies. Catalysts, 13(2), 443. https://doi.org/10.3390/catal13020443
  28. Nawaz, H., Muzaffar, S., Aslam, M., Ahmad, S., Nawaz, H., Muzaffar, S., Aslam, M., & Ahmad, S. (2018). Phytochemical Composition: Antioxidant Potential and Biological Activities of Corn. In Corn—Production and Human Health in Changing Climate. IntechOpen. https://doi.org/10.5772/intechopen.79648
  29. Nguyen, V., Taine, E. G., Meng, D., Cui, T., & Tan, W. (2024). Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients, 16(7), 924. https://doi.org/10.3390/nu16070924
  30. Nurmamulyosari, L. D., Hariri, M. R., Gofur, A., Listyorini, D., Susanto, H., & Handaya, A. Y. (2015). Effect of Aloe vera Extract to The Insulin-Like Growth Factor-1 (IGF-1) Levels from Visceral Fat Tissue In Rattus norvegicus Wistar Diabetes Mellitus. KnE Life Sciences, 2(1), 174–179. https://doi.org/10.18502/kls.v2i1.138
  31. Ola, M. S., Aleisa, A. M., Al-Rejaie, S. S., Abuohashish, H. M., Parmar, M. Y., Alhomida, A. S., & Ahmed, M. M. (2014). Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 35(7), 1003–1008. https://doi.org/10.1007/s10072-014-1628-5
  32. Patel, K., Sen, D. B., Sen, A. K., & Maheshwari, R. A. (2023). An Attention-Grabbing Review on Stigma Maydis (Corn Silk). Journal of Natural Remedies, 23(1), 35–46. https://doi.org/10.18311/jnr/2023/31289
  33. Rahman, N. A., & Wan Rosli, W. I. (2014). Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University - Science, 26(2), 119–127. https://doi.org/10.1016/j.jksus.2013.11.002
  34. Raihan, A., Illahi, A. K., Rokhimah, S., Elisa, T. P. P., & Maliza, R. (2023). Identification of Bioactive Solutions of Corn Silk (Zea mays L.) Extract and Biological Activity Test By Bioinformatics. Jurnal Biologi Tropis, 23(1), 245–250. https://doi.org/10.29303/jbt.v23i1.5846
  35. Ren, S.-C., Liu, Z.-L., & Ding, X.-L. (2009). Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). Journal of Medicinal Plants Research, 3(12), 1009–1015. https://doi.org/10.5897/JMPR.9000839
  36. Shankaranarayana, S. H., Gajanana, V. K., Chavan, M., Chavannavar, S. V., & Doddanagappa, S. (2024). Bioactive Potential of Baby Corn Silk: In-Vitro Evaluation of Antioxidant, Antimicrobial, Anti-diabetic, and Anti-gout Activities. Waste and Biomass Valorization, 15(7), 4353–4372. https://doi.org/10.1007/s12649-024-02443-1
  37. Sonia, H., Chelleng, N., Afzal, N. U., Manna, P., Puzari, M., Chetia, P., & Tamuly, C. (2025). Anti-diabetic and anti-urease inhibition potential of Amomum dealbatum Roxb. Seeds through a bioassay-guided approach. Natural Product Research, 39(10), 2978–2983. https://doi.org/10.1080/14786419.2023.2301679
  38. Wang, K.-J., & Zhao, J.-L. (2019). Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 510–517. https://doi.org/10.1016/j.biopha.2018.11.126
  39. Wang, T., Wang, J., Hu, X., Huang, X.-J., & Chen, G.-X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76–98. https://doi.org/10.4331/wjbc.v11.i3.76
  40. Wang, Y., Mao, J., Zhang, M., Liu, L., Zhu, Y., Gu, M., Zhang, J., Bu, H., Sun, Y., Sun, J., Ma, Y., Guo, L., Zheng, Y., & Liu, Q. (2024). An Umbrella Insight into the Phytochemistry Features and Biological Activities of Corn Silk: A Narrative Review. Molecules, 29(4), Article 4. https://doi.org/10.3390/molecules29040891
  41. Wu, L.-C., Lin, C.-L., Peng, C.-C., Huang, T.-L., Tsai, T.-H., Kuan, Y.-E., & Chung, Y.-C. (2021). Development from Jasminum sambac Flower Extracts of Products with Floral Fragrance and Multiple Physiological Activities. Evidence-Based Complementary and Alternative Medicine, 2021, 1–12. https://doi.org/10.1155/2021/7657628
  42. Xing, X., Chun, C., Qiang, H., Xiong, F., & Rui-Hai, L. (2021). Investigation into the mechanisms of quercetin-3-O -glucuronide inhibiting α-glucosidase activity and non-enzymatic glycation by spectroscopy and molecular docking. Food & Function, 12(17), 7825–7835. https://doi.org/10.1039/D1FO01042E
  43. Zhang, Y., Xiong, Y., An, H., Li, J., Li, Q., Huang, J., & Liu, Z. (2022). Analysis of Volatile Components of Jasmine and Jasmine Tea during Scenting Process. Molecules, 27(2), 479. https://doi.org/10.3390/molecules27020479
  44. Zheng, Z., Zong, Y., Ma, Y., Tian, Y., Pang, Y., Zhang, C., & Gao, J. (2024). Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 9(1), 234. https://doi.org/10.1038/s41392-024-01931-z

Open Access Copyright (c) 2025 Bohari Bohari, Rimbawan Rimbawan, Zuraidah Nasution, Ekowati Handharyani
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

AcTion: Aceh Nutrition Journal
Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health.
Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121.
Website: https://gizipoltekkesaceh.ac.id/
E-mail: jurnal6121@gmail.com

e-issn: 2548-5741, p-issn: 2527-3310

All content is licensed under a: Creative Commons Attribution ShareAlike 4.0 International License

View My Stats

Get a feed by atom here, RRS2 here and OAI Links here