Pengaruh Pemberian Tepung Ulat Sagu (Rhyinchophorus Ferrugineus) Terhadap Penurunan Kadar Malondialdehid (MDA) Pada Tikus Wistar Model Kekurangan Energi Protein (KEP)
Subject
Tepung ulat sagu, Kekurangan Energi Protein, Malondialdehid (MDA)
AcTion: Aceh Nutrition Journal Published by: Department of Nutrition at the Health Polytechnic of Aceh, Ministry of Health. Soekarno-Hatta Street, No. 168. Health Polytechnic of Aceh, Aceh Besar, 23352. Telp/Fax: 0651 46126 / 0651 46121. Website: https://gizipoltekkesaceh.ac.id/ E-mail: jurnal6121@gmail.com
Kwashiorkor is protein-energy malnutrition (PEM) caused by protein deficiency. Sago worm flour (Rhynchophorus ferrugineus) can reduce malondialdehyde (MDA) caused by the high content of the amino acids glycine, lysine, and phenylalanine. The study aimed to prove the effect of sago worm flour on MDA levels in Wistar rats with a low protein diet. A true experimental-pre-post control group. The intervention was given for 28 days to 28 Wistar rats, divided into four groups with each group of seven rats. The dose of sago starch was 0,36 g/100 g rat body weight/day (P1), and a dose of 1,36 g/100 g rat body weight/day (P2) for rats fed a low diet protein. The treatment group was compared with a group of mice given a low diet protein (K +) and a group of healthy mice (K-). Serum MDA levels were measured by the TBARs method. Statistical analysis used paired t-test or Wilcoxon test and one-way ANOVA/Kruskal Wallis test. The results of decreasing MDA levels were in the P1 and P2 groups (p= 0,000). There was a difference in MDA levels in the P1 and P2 groups compared to the K + group (P= 0,000). There was a difference that decreased MDA levels between P1 and P2 (p= 0,000). In conclusion, sago worm flour at a dose of 0,36 g/100 g of rats/day and a dose of 1,36 g/100 g of body weight of rats/day can reduce MDA levels
Akinola, F., Oguntibeju, O., & Alabi, O. (2010). Effects of severe malnutrition on oxidative stress in Wistar rats. Scientific Research and Essays, 5(10), 1145–1149.
Andersen, M. L., & Winter, L. M. F. (2019). Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc, 91(1), 1–14. https://doi.org/10.1590/0001-3765201720170238
Anggraeny, O., Dianovita, C., Putri, E. N., Sastrina, M., & Dewi, R. S. (2016). Korelasi Pemberian Diet Rendah Protein Terhadap Status Protein, Imunitas, Hemoglobin, dan Nafsu Makan Tikus Wistar Jantan. Indonesian Journal of Human Nutrition, 3(2), 105–122. https://doi.org/10.21776/ub.ijhn.2016.003.Suplemen.5
Ariani, A., Anjani, G., Sofro, M. A. U., & Djamiatun, K. (2018). Tepung ulat sagu (Rhyinchophorus ferrugineus) imunomodulator Nitric Oxide (NO) sirkulasi mencit terapi antimalaria standar. Jurnal Gizi Indonesia, 6(2), 131–138. https://doi.org/10.14710/jgi.6.2.131-138
Arrigo, T., Leonardi, S., Cuppari, C., Manti, S., Lanzafame, A., D’Angelo, G., Gitto, E., Marseglia, L., & Salpietro, C. (2015). Role of the diet as a link between oxidative stress and liver diseases. World Journal of Gastroenterology, 21(2), 384–395. https://doi.org/10.3748/wjg.v21.i2.384
Balitbangkes. (2018). Hasil Utama Riset Kesehata Dasar (RISKESDAS). In Badan Penelitian dan Pengembangan Kesehatan.
Bustaman, S. (2008). Potensi ulat sagu dan prospek pemanfaatannya. Jurnal Litbang Pertanian, 27(10), 50–54.
Dewi, L., Lestari, L. A., Astiningrum, A. N., Fadhila, V., Amala, N., Bakrie, M. A., & Hidayah, N. (2020). Tempeh and red ginger flour for hypercholesterolemic rats. Nutrition & Food Science, 51(1), 41–49. https://doi.org/10.1108/NFS-01-2020-0005
FOLU. (2019). Tumbuh Lebih Baik: Sepuluh Transisi Penting untuk Melakukan Transformasi Pangandan Tata Guna Lahan. In Food and Land Use Coalition. www.foodandlandusecoalition.org
Food and Argriculture Organization of the United Nations. (2013). Edible insects. Future prospects for food and feed security. In Food and Agriculture Organization of the United Nations (Vol. 171).
Giustina, A., Mazziotti, G., & Canalis, E. (2008). Growth hormone, insulin-like growth factors, and the skeleton. Endocrine Reviews, 29(5), 535–559. https://doi.org/10.1210/er.2007-0036
Gourine, H., Grar, H., Dib, W., Mehedi, N., Boualga, A., Saidi, D., & Kheroua, O. (2018). Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats. Frontiers in Biology, 13(5), 366–375. https://doi.org/10.1007/s11515-018-1511-5
Gupta, V., Gupta, A., Saggu, S., Divekar, H. M., & Grover, S. K. (2005). Anti-stress and Adaptogenic Activity of L -Arginine Supplementation. Evidence-Based Ccomplementary and Alternative Medicine, 2(December 2004), 93–97. https://doi.org/10.1093/ecam/neh054
Haryanto, B., Mubekti, & Putranto, A. T. (2015). Potensi dan Pemanfaatan Pati Sagu dalam Mendukung Ketahanan Pangan di Kabupaten Sorong Selatan Papua Barat. Pangan, 24(2), 97–106.
Hawkes, C. P., & Grimberg, A. (2015). Insulin-like growth factor-I is a marker for the nutritional state. Pediatric Endocrinology Reviews, 13(2), 499–511.
Heikens, G. T., & Manary, M. (2009). 75 years of Kwashiorkor if Africa. Malawi Medical Journal, 21(3), 96–100.
Hsu, J. W., Badaloo, A., Wilson, L., Taylor-bryan, C., Chambers, B., Reid, M., Forrester, T., & Jahoor, F. (2014). Dietary Supplementation with Aromatic Amino Acids Increases Protein Synthesis in Children with Severe Acute Malnutrition 1 – 4. The Journal of Nutrition, 144(5), 660–666. https://doi.org/10.3945/jn.113.184523.TABLE
Jahoor, F., Badaloo, A., Reid, M., & Forrester, T. (2008). Protein metabolism in severe childhood malnutrition. Annals of Tropical Paediatrics, 28(2), 87–101. https://doi.org/10.1179/146532808X302107
Katayama, S., & Mine, Y. (2007). Antioxidative activity of amino acids on tissue oxidative stress in human intestinal epithelial cell model. Journal of Agricultural and Food Chemistry, 55(21), 8458–8464. https://doi.org/10.1021/jf070866p
Kemenkes RI. (2014). Buku Studi Diet Total : Survei Konsumsi Makanan Individu Indonesia 2014. Kementerian Kesehatan Republik Indonesia.
Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W., & Choi, Y. S. (2019). Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521–540. https://doi.org/10.5851/kosfa.2019.e53
Köhler, R., Irias-Mata, A., Ramandey, E., Purwestri, R., & Biesalski, H. K. (2020). Nutrient composition of the Indonesian sago grub (Rhynchophorus bilineatus). International Journal of Tropical Insect Science, 40(3), 677–686. https://doi.org/10.1007/s42690-020-00120-z
Lewicki, S., Leśniak, M., Bertrandt, J., Kalicki, B., Jacek, Z., & Lewicka, A. (2018). The long-term effect of a protein-deficient-diet enriched with vitamin B6 on the blood parameters in unexercised and exercised rats. Food and Agricultural Immunology, 29(1), 722–734. https://doi.org/10.1080/09540105.2018.1439900
Ling, P. R., & Bistrian, B. R. (2009). Comparison of the effects of food versus protein restriction on selected nutritional and inflammatory markers in rats. Metabolism: Clinical and Experimental, 58(6), 835–842. https://doi.org/10.1016/j.metabol.2009.03.002
Munthali, T., Jacobs, C., Sitali, L., Dambe, R., & Michelo, C. (2015). Mortality and morbidity patterns in under-five children with severe acute malnutrition (SAM) in Zambia: A five-year retrospective review of hospital-based records (2009-2013). Archives of Public Health, 73(1), 1–9. https://doi.org/10.1186/s13690-015-0072-1
Nirmala, I. R., Trees, Suwarni, & Pramono, M. S. (2017). Sago worms as a nutritious traditional and alternative food for rural children in Southeast Sulawesi, Indonesia. Asia Pacific Journal of Clinical Nutrition, 26(May), S40–S49. https://doi.org/10.6133/apjcn.062017.s4
P. Fazeli, A. K. (2015). Determinants of Growth Hormone Resistance in Malnutrition. Journal of Endocrinology, 220(3), 1–14. https://doi.org/10.1530/JOE-13-0477.Determinants
Pezeshki, A., Zapata, R. C., Singh, A., Yee, N. J., & Chelikani, P. K. (2016). Low protein diets produce divergent effects on energy balance. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep25145
Réhault-Godbert, S., Guyot, N., & Nys, Y. (2019). The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients, 11(3), 1–26. https://doi.org/10.3390/nu11030684
Savage, M. O. (2013). Insulin-like growth factors, nutrition and growth. World Review of Nutrition and Dietetics, 106, 52–59. https://doi.org/10.1159/000342577
Scrimshaw, N. S., & Viteri, F. E. (2010). INCAP studies of kwashiorkor and marasmus. Food and Nutrition Bulletin, 31(1), 34–41. https://doi.org/10.1177/156482651003100105
Soenen, S., Martens, E. A. P., Hochstenbach-waelen, A., Lemmens, S. G. T., & Westerterp-plantenga, M. S. (2013). Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. Journal of Nutrition, 143(5), 591–596. https://doi.org/10.3945/jn.112.167593
Tao, J., & Li, Y. O. (2018). Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, 2(1), 17–26. https://doi.org/10.1093/fqsafe/fyy001
Tessema, M., Gunaratna, N. S., Brouwer, I. D., Donato, K., Cohen, J. L., McConnell, M., Belachew, T., Belayneh, D., & Groote, H. De. (2018). Associations among high-quality protein and energy intake, serum transthyretin, serum amino acids and linear growth of children in Ethiopia. Nutrients, 10(11), 1–17. https://doi.org/10.3390/nu10111776
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Wamiti, J., Kogi-Makau, W., Onyango, F. E., & Ngala, S. (2017). Leucine supplementation in the management of protein energy malnutrition: A review. East African Medical Journal, 94(1), 20–24.
Wang, J., Xue, X., Liu, Q., Zhang, S., Peng, M., Zhou, J., Chen, L., & Fang, F. (2019). Effects of duration of thermal stress on growth performance, serum oxidative stress indices, the expression and localization of ABCG2 and mitochondria ROS production of skeletal muscle, small intestine and immune organs in broilers. Journal of Thermal Biology, 85(August), 102420. https://doi.org/10.1016/j.jtherbio.2019.102420
WHO. (2000). General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine World Health Organization.
Wu, A., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Rhoads, J. M., Satterfield, M. C., Smith, S. B., Spencer, T. E., & Yin, Y. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 1–7. https://doi.org/10.1007/s00726-008-0210-y.Arginine
Xiao, L., Cao, W., Liu, G., Fang, T., & Wu, X. (2016). Arginine , N -carbamylglutamate , and glutamine exert protective effects against oxidative stress in rat intestine. Animal Nutrition, 2(3), 242–248. https://doi.org/10.1016/j.aninu.2016.04.005
Zhao, W., Zhai, F., Zhang, D., An, Y., Liu, Y., He, Y., Ge, K., & Scrimshaw, N. S. (2004). Lysine-fortified wheat flour improves the nutritional and immunological status of wheat-eating families in northern China. Food and Nutrition Bulletin, 25(2), 123–129. https://doi.org/10.1177/156482650402500203