Pengembangan aplikasi android ‘EDD-N’ untuk deteksi dini penyakit neonatus: Sebuah Penelitian dan Pengembangan
DOI: 10.30867/gikes.v6i3.2625Abstract
Background: Early detection of neonatal diseases can be done at home to prevent disease, reduce the burden of treatment, and reduce the risk of death. Neonates are susceptible to infection, so an application is needed to easily and quickly recognize the early symptoms of disease. This research does not support the local language, making it difficult for some mothers who are accustomed to using the local language.
Method: The Research and Development (R&D) study design resulted in the development of an Android-based prototype application titled “Early Detection of Neonatal Diseases” (EDD-N). The steps in creating the application included: Focus Group Discussion (FGD), application concept design, development of the EDD-N application in collaboration with PT Bumantara Transformasi Digital, and feasibility testing. The research was conducted in Langsa City, Aceh Province, from June 3 to August 30, 2023. The number of respondents for each FGD and feasibility testing was 15 and 40 respondents, respectively. Feasibility testing used a Likert scale questionnaire with analysis in two stages.
Results: The “Early Detection of Neonatal Diseases” (EDD-N) Android-based application consists of a main page titled “My Baby.” The application includes the health history of the mother and child, disease education comprising definitions, signs, and symptoms, and disease management. The content is presented in the form of images, videos, and narratives. Early detection is conducted via a questionnaire. The app's users include the general public, community health workers, healthcare professionals, and IT personnel. Users are rewarded with certificates, and the app's closing screen displays a logout menu. The usability test results for the EDD-N Android app from stage 1 to stage 2 yielded a value of 1.9. The p-value was 0,0001. The change in the EDD-N app process from stage 1 to stage 2 was 1.7. P-value 0,0001 (<0,05).
Conclusion: The EDD-N app can be used for early detection of neonatal diseases.Keywords
Full Text:
PDFReferences
Bhagat, I. A., Wankhede, K. G., Kopawar, N. A., & Sananse, D. A. (2024). Explainable Artificial Intelligence in Healthcare -A Review. International Journal of Scientific Research in Science, Engineering and Technology, 11(4), 1059–1064. https://doi.org/10.1109/ICICT60155.2024.10544745
Chirambo, G. B., Hardy, V. E., Heavin, C., O’Connor, Y., O’ Donoghue, J., Mastellos, N., Tran, T., Hsieh, J., Wu, J. T. S., Carlsson, S., Andersson, B., Muula, A. S., & Thompson, M. (2018). Perceptions of a mobile health intervention for community case management in Malawi: Opportunities and challenges for health surveillance assistants in a community setting. Malawi Medical Journal, 30(1), 6–12. https://doi.org/10.4314/mmj.v30i1.2
Denis, F., Maurier, L., Carillo, K., Ologeanu-Taddei, R., Septans, A. L., Gepner, A., Goff, F. Le, Desbois, M., Demurger, B., Silber, D., Zeitoun, J. D., Assuied, G. P., & Bonnot, O. (2022). Early Detection of Neurodevelopmental Disorders of Toddlers and Postnatal Depression by Mobile Health App: Observational Cross-sectional Study. JMIR MHealth and UHealth, 10(5), 1–10. https://doi.org/10.2196/38181
Dix, A., & Abowd, G. (2024). Human-Computer Interaction. Encyclopedia of Computer Graphics and Games, January 2004, 896–896. https://doi.org/10.1007/978-3-031-23161-2_300605
Franke, K. H., Krumkamp, R., Mohammed, A., Sarpong, N., Owusu-Dabo, E., Brinkel, J., Fobil, J. N., Marinovic, A. B., Asihene, P., Boots, M., May, J., & Kreuels, B. (2018). A mobile phone based tool to identify symptoms of common childhood diseases in Ghana: Development and evaluation of the integrated clinical algorithm in a cross-sectional study. BMC Medical Informatics and Decision Making, 18(1), 1–10. https://doi.org/10.1186/s12911-018-0600-3
Hardy, V., O’Connor, Y., Heavin, C., Mastellos, N., Tran, T., O’Donoghue, J., Fitzpatrick, A. L., Ide, N., Wu, T. S. J., Chirambo, G. B., Muula, A. S., Nyirenda, M., Carlsson, S., Andersson, B., & Thompson, M. (2017). The added value of a mobile application of Community Case Management on referral, re-consultation and hospitalization rates of children aged under 5 years in two districts in Northern Malawi: Study protocol for a pragmatic, stepped-wedge cluster-randomize. Trials, 18(1), 1–14. https://doi.org/10.1186/s13063-017-2213-z
Hendryani, A., & Susana, E. (2020). Pengembangan Aplikasi Mobile Health Berbasis Android untuk Monitoring dan Evaluasi Stunting. Jurnal Sehat Mandiri, 15(1), 24–32. https://doi.org/10.33761/jsm.v15i1.188
Hoffmann, I. M., Andersen, A. M., Lund, S., Nygaard, U., Joshua, D., & Poulsen, A. (2024). Smartphone apps hold promise for neonatal emergency care in low-resource settings. Acta Paediatrica, International Journal of Paediatrics, 113(12), 2526–2533. https://doi.org/10.1111/apa.17410
Knop, M. R., Nagashima-Hayashi, M., Lin, R., Saing, C. H., Ung, M., Oy, S., Yam, E. L. Y., Zahari, M., & Yi, S. (2024). Impact of mHealth interventions on maternal, newborn, and child health from conception to 24 months postpartum in low- and middle-income countries: a systematic review. BMC Medicine, 22(1), 1–19. https://doi.org/10.1186/s12916-024-03417-9
Kurniasih, H., Widyawati, M. N., & Kurnianingsih, K. (2022). Mobile application for early detection of non-communicable diseases. Medisains, 20(3), 94. https://doi.org/10.30595/medisains.v20i3.13716
Laudon, K., & Laudon, J. (2022). Managing information Sustems. In Management Information System. https://api.pageplace.de/preview/DT0400.9781292403571_A42098351/preview-9781292403571_A42098351.pdf
Moosa, A. S., Ngeow, A. J. H., Yang, Y., Poon, Z., Ng, D. X., Ling, E. K. Y., & Tan, N. C. (2023). A Novel Smartphone App for Self-Monitoring of Neonatal Jaundice Among Postpartum Mothers: Qualitative Research Study. JMIR MHealth and UHealth, 11(1). https://doi.org/10.2196/53291
Ngeow, A. J. H., Moosa, A. S., Tan, M. G., Zou, L., Goh, M. M. R., Lim, G. H., Tagamolila, V., Ereno, I., Durnford, J. R., Cheung, S. K. H., Hong, N. W. J., Soh, S. Y., Tay, Y. Y., Chang, Z. Y., Ong, R., Tsang, L. P. M., Yip, B. K. L., Chia, K. W., Yap, K., … Tan, N. C. (2024). Development and Validation of a Smartphone Application for Neonatal Jaundice Screening. JAMA Network Open, 7(12), e2450260. https://doi.org/10.1001/jamanetworkopen.2024.50260
Petersen, C., & DeMuro, A. (2015). Legal and regulatory considerations associated with use of patient-generated health data from social media and mobile health (mHealth) devices. Applied Clinical Informatics, 6(1), 16–26. https://doi.org/10.4338/ACI-2014-09-R-0082
Ponum, M., Hasan, O., & Khan, S. (2019). EasyDetectDisease: An Android App for Early Symptom Detection and Prevention of Childhood Infectious Diseases. Interactive Journal of Medical Research, 8(2), e12664. https://doi.org/10.2196/12664
Schaeffer, L. E., Ahmed, S., Rahman, M., Whelan, R., Rahman, S., Roy, A. D., Nijhum, T. A., Bably, N. N., D’Couto, H., Hudelson, C., Jaben, I. A., Rubayet, S., Baqui, A., & Lee, A. C. C. (2019). Development and evaluation of a mobile application for case management of small and sick newborns in Bangladesh. BMC Medical Informatics and Decision Making, 19(1), 1–12. https://doi.org/10.1186/s12911-019-0835-7
Shiferaw, S., Workneh, A., Yirgu, R., Dinant, G. J., & Spigt, M. (2018). Designing mHealth for maternity services in primary health facilities in a low-income setting - Lessons from a partially successful implementation 08 Information and Computing Sciences 0806 Information Systems. BMC Medical Informatics and Decision Making, 18(1), 1–14. https://doi.org/10.1186/s12911-018-0704-9
Shortliffe, E. H., & J.Cimino, J. (2021). Biomedical Informatics.
Umami, N. K., & Wibisono, S. (2021). Deteksi Dini Penyakit Balita Menggunakan Algoritma Sorensen Berbobot. Jurnal Ilmiah Informatika, 9(02), 60–67. https://doi.org/10.33884/jif.v9i02.3744
Vanosdoll, M., Ng, N., Ho, A., Wallingford, A., Xu, S., Matin, S. B., Verma, N., Farzin, A., Golden, W. C., Yazdi, Y., Waiswa, P., Labrique, A., & Acharya, S. (2019). A novel mobile health tool for home-based identification of neonatal illness in Uganda: Formative usability study. JMIR MHealth and UHealth, 7(8), 1–16. https://doi.org/10.2196/14540.
Refbacks
- There are currently no refbacks.











